scholarly journals Computational studies of the thermodynamic properties, and global and reactivity descriptors of fluorescein dye derivatives in acetonitrile using density functional theory

2021 ◽  
pp. 174751982199451
Author(s):  
Juma Mzume Juma ◽  
Said AH Vuai

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap, and thermodynamic properties of molecular dyes fluorescein (FS), fluorescein attached with methoxy (FSO), fluorescein attached with amine (FSA), fluorescein attached with methane (FSM), fluorescein attached with ethene (FSE), and fluorescein attached with thiophene (FST) using the hybrid functional B3LYP and 6-311G basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased which is important for easy transfer of electron from donating to the accepting group. For all dyes, highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to semiconductors and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the molecular dye attached to thiophene has the highest ionization potential. Meanwhile, a donating group with increased conjugation results in low electron affinity.

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 163
Author(s):  
Nguyen Van Trang ◽  
Tran Ngoc Dung ◽  
Ngo Tuan Cuong ◽  
Le Thi Hong Hai ◽  
Daniel Escudero ◽  
...  

A class of D-π-A compounds that can be used as dyes for applications in polymer solar cells has theoretically been designed and studied, on the basis of the dyes recently shown by experiment to have the highest power conversion efficiency (PCE), namely the poly[4,8-bis(5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTS-TZNT) and poly[4,8-bis(4-fluoro-5-(2-butylhexylthio)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-TZNT] (PBDTSF-TZNT) substances. Electronic structure theory computations were carried out with density functional theory and time-dependent density functional theory methods in conjunction with the 6−311G (d, p) basis set. The PBDTS donor and the TZNT (naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole)) acceptor components were established from the original substances upon replacement of long alkyl groups within the thiophene and azole rings with methyl groups. In particular, the effects of several π-spacers were investigated. The calculated results confirmed that dithieno[3,2-b:2′,3′-d] silole (DTS) acts as an excellent π-linker, even better than the thiophene bridge in the original substances in terms of well-known criteria. Indeed, a PBDTS-DTS-TZNT combination forms a D-π-A substance that has a flatter structure, more rigidity in going from the neutral to the cationic form, and a better conjugation than the original compounds. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of such a D-π-A substance becomes smaller and its absorption spectrum is more intense and red-shifted, which enhances the intramolecular charge transfer and makes it a promising candidate to attain higher PCEs.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4043 ◽  
Author(s):  
Temiloluwa T. Adejumo ◽  
Nikolaos V. Tzouras ◽  
Leandros P. Zorba ◽  
Dušanka Radanović ◽  
Andrej Pevec ◽  
...  

Two new Zn(II) complexes with tridentate hydrazone-based ligands (condensation products of 2-acetylthiazole) were synthesized and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction methods. The complexes 1, 2 and recently synthesized [ZnL3(NCS)2] (L3 = (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium) complex 3 were tested as potential catalysts for the ketone-amine-alkyne (KA2) coupling reaction. The gas-phase geometry optimization of newly synthesized and characterized Zn(II) complexes has been computed at the density functional theory (DFT)/B3LYP/6–31G level of theory, while the highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO and LUMO) energies were calculated within the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G and B3LYP/6-311G(d,p) levels of theory. From the energies of frontier molecular orbitals (HOMO–LUMO), the reactivity descriptors, such as chemical potential (μ), hardness (η), softness (S), electronegativity (χ) and electrophilicity index (ω) have been calculated. The energetic behavior of the investigated compounds (1 and 2) has been examined in gas phase and solvent media using the polarizable continuum model. For comparison reasons, the same calculations have been performed for recently synthesized [ZnL3(NCS)2] complex 3. DFT results show that compound 1 has the smaller frontier orbital gap so, it is more polarizable and is associated with a higher chemical reactivity, low kinetic stability and is termed as soft molecule.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad

Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD) and IR dyes (covering IR region; TIRBD1-TIRBD3) were performed using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.


2021 ◽  
Author(s):  
xiaosong Xu ◽  
Renfa Zhang ◽  
Wenxin Xia ◽  
Peng Ma ◽  
Congming Ma ◽  
...  

Abstract The external electric field has a significant influence on the sensitivity of the energetic cocrystal materials. In order to find out the relationship between the external electric field and sensitivity of energetic cocrystal compounds 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1,4-dinitroimidazole (CL-20/1,4-DNI), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-2,4-dinitro-1H-imidazole (CL-20/2,4-MDNI) and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/1-methyl-4,5-dinitro-1H-imidazole (CL-20/4,5-MDNI). In this work, density functional theory (DFT) at B3LYP-D3/6-311+G(d,p) and M062X-D3/ma-def2 TZVPP levels was employed to calculate the bond dissociation energies (BDEs) of selected N-NO2 trigger bonds, frontier molecular orbitals, electrostatic potentials (ESPs) and nitro group charges (QNO2) under different external electric field. The results show that as the positive electric field intensity increases, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy gap and BDEs become smaller, and the local positive ESPs becomes larger, so that the energetic cocrystals tends to have higher sensitivity. In addition, the linear fitting results show that the trigger bond length and nitro group charge changes are closely related to the external electric field strength.


Author(s):  
R. A. Ismail ◽  
A. B. Suleiman ◽  
A. S. Gidado ◽  
A. Lawan ◽  
A. Musa

Rosiglitazone ( C18H19N3O3S ) is an anti-diabetic drug that reduces insulin resistance in patients with type 2 diabetes. The parameters (bond lengths and bond angles), HOMO, LUMO, HOMO-LUMO energy gap, dipole moment, thermodynamic properties, total energy and vibrational frequencies and intensities of the Rosiglitazone molecule in gas phase and in solvents (Water, Ethanol, DMSO and Acetonitrile) were calculated based on Density Functional Theory (DFT) using standard basis sets: B3LYP/6-31G(d,p), B3LYP/6-31+G(d,p) and B3LYP/6-31++G(d,p). Windows version of Gaussian 09 was used for all the calculations. From the results obtained, the solvents have little influence on the optimized parameters of the molecule. The highest HOMO value of -5.433 eV was found in gas phase showing that the molecule will best donate electron in the gas phase, followed by ethanol in comparison with other solvents. The values of the HOMO were observed to increase with the decrease in dielectric constants of the solvents across all the basis sets used. The lowest LUMO energy of -1.448 eV was found to be in ethanol which shows that the molecule will best accept electron in ethanol compared to the gas phase and other solvents. The largest HOMO-LUMO gap of 4.285 eV was found in water which shows its higher kinetic stability and less chemical reactivity compared to other solvents and in the gas phase. The chemical softness of the molecule was found to decrease as the dielectric constants of the solvents increased namely from ethanol to water. The chemical hardness was found to slightly increase with the increase in dielectric constants of the solvents. The highest value of the dipole moment of 4.6874 D was found in water indicating that the molecule will have the strongest intermolecular interactions in water compared to other solvents and in the gas phase. The total energy increased as the dielectric constants of the solvents decreased from water to ethanol. The vibrational frequencies and intensities increased as the dielectric constants of the solvents increased from ethanol to water. The results confirmed the effects of solvents on the structural, electronic and thermodynamic properties of the studied molecule and will be useful in the design and development of rosiglitazone as an anti-diabetic drug.


Author(s):  
Nguyen Huu Tho ◽  
Nguyen Thanh Trung

Geometries associated energy gap and electronic properties of adenine, DNA base interaction on the ZnO model cluster have been investigated by using density functional theory with the B3LYP exchange-correlation potential and effective core potential (ECP) LanL2DZ basis sets. The most stable interaction characteristics were analysed with respect to the binding energy, frontier orbital, elemental positions. Natural population analysis charge is also examined to understand the associated charge transfer in structures of cluster and complex. In the Zn-N bonding, combination coefficient from atom orbitals of nitrogen is much higher than that of zinc. The corresponding weight for this coefficient is 94.80%. The results of this study can serve as an orientation for the design of composite material in biomedical nanotechnology.


2020 ◽  
pp. 11-18
Author(s):  
Punya Paudel ◽  
Krishna Raj Adhikari ◽  
Kapil Adhikari

Paracetamol (PCA) has two well-known polymorphic forms, monoclinic (form I) and orthorhombic (form II). The parallel packing of flat hydrogen bonded layers in the metastable form II results in compaction properties superior to the thermodynamic stable form I which contains corrugated hydrogen bonded layers of molecules. In this study, the structure of Paracetamol (PCA)-Oxalic acid (OXA) co-crystal has been analyzed and found layered structure similar to PCA form II which enhance ability to form tablet. The Density Functional Theory (DFT) has been conducted to find some physicochemical properties of co-crystal. It was observed that the lattice energy of co-crystal is more than that of PCA form II showing more stability on co-crystal. The energy gap between highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO gap) in co-crystal was found less than PCA form II showing bigger enhancement of reactivity.


2021 ◽  
Vol 16 (4) ◽  
pp. 584-590
Author(s):  
Haiyang Gu ◽  
Xingyi Huang ◽  
Quansheng Chen ◽  
Chin Ping Tan ◽  
Yanhui Sun

A theoretical study of copper porphyrin (CuP), without any meso substituent, reacting with different volatile organic compounds (VOCs), recently applied as the dye in the fluorescent array sensor was calculated for the ground and excited electronic states. Geometry structures of CuP and its complexes were optimized by using density functional theory coupled with B3LYP/LAN2DZ basis set, whereas excitation energies were calculated by time-dependent density functional theory at the same level. The calculated relative energies of CuP and its complexes have displayed the following order: CuP-L6 < CuP-L1 < CuP-H2S < CuP < CuP-L4 < CuP-L2 < CuP-O2 < CuP-L5 < CuP-L3. The relative energies between CuP and propionaldehyde (L6) possess the lowest energy gap, causing the binding to react more efficiently and faster than the other complexes. The results also reveal that the addition of VOCs has a significant influence on the spectrum property and energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). This study suggests that the calculation result is useful for the application of a CuP-based fluorescent array sensor for a special analyte.


2009 ◽  
Vol 87 (2) ◽  
pp. 406-415 ◽  
Author(s):  
Dongsheng Jiao ◽  
Hongyan Wang ◽  
Yanlan Zhang ◽  
Yu Tang

The structures and the relative energies of six possible tautomers of the thymine base have been studied by density functional theory (DFT) using the B3LYP and BP86 functionals. The keto-thymine (T1) is predicted to be the most stable thymine tautomer, which is consistent with the other theoretical results and experimental data. The corresponding thymine cations and anions are studied using the same level of theory with double-ζ plus polarization and diffuse functions (DZP++) basis sets. The ionization potentials (IPs), the electron affinities (EAs), and proton affinities (PAs) for different protonation sites in thymine base are obtained. T1 has the largest ionization potential and the lowest proton affinity among all the considered thymine tautomers.


Author(s):  
Ahlam Idrissi ◽  
Karim Chkirate ◽  
Nadeem Abad ◽  
Bahia Djerrari ◽  
Redouane Achour ◽  
...  

In the title molecule, C13H13N3O, the isoxazole ring is inclined to the benzimidazole ring at a dihedral angle of 69.28 (14)°. In the crystal, N—H...N hydrogen bonds between neighboring benzimidazole rings form chains along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (48.8%), H...C/C...H (20.9%) and H...N/N...H (19.3%) interactions. The optimized structure calculated using density functional theory at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap is 4.9266 eV.


Sign in / Sign up

Export Citation Format

Share Document