scholarly journals Imaging and classification of osteochondritis dissecans of the capitellum: X-ray, magnetic resonance imaging or computed tomography?

2018 ◽  
Vol 11 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Kimberly I. M. van den Ende ◽  
Renée Keijsers ◽  
Michel P. J. van den Bekerom ◽  
Denise Eygendaal

Background Diagnosing capitellar osteochondritis dissecans (OCD) can be difficult, causing delay in treating young athletes. The main aim of this retrospective diagnostic study was to determine which radiological technique is preferred to identify and classify elbow OCD. Methods We identified young patients who underwent elbow arthroscopy because of symptomatic OCD. We included all patients who had pre-operative radiographs, a computed tomography (CT) scan and magnetic resonance imaging (MRI) available. We assessed whether the osteochondral lesion could be identified using the various imaging modalities. All lesions were classified according to previous classifications for X-ray, CT and MRI, respectively. These results were compared with findings at arthroscopy. Results Twenty-five patients had pre-operative radiographs as well as CT scans and MRI. In six patients, the lesion was not visible on standard X-ray. In 20 patients, one or two loose bodies were found during surgery, consistent with an unstable lesion. Pre-operatively, this was seen on 11 X-rays, 13 MRIs and 18 CT scans. Conclusions Capitellar OCD lesions are not always visible on standard X-rays. A CT appears to be the preferred imaging technique to confirm diagnosis of OCD. Loose bodies are often missed, especially on standard X-rays and MRIs.

2019 ◽  
Vol 58 (6) ◽  
pp. 671-676
Author(s):  
Amy M. West ◽  
Pierre A. d’Hemecourt ◽  
Olivia J. Bono ◽  
Lyle J. Micheli ◽  
Dai Sugimoto

The objective of this study was to determine diagnostic accuracy of magnetic resonance imaging (MRI) and computed tomography (CT) scans in young athletes diagnosed with spondylolysis. A cross-sectional study was used. Twenty-two young athletes (14.7 ± 1.5 years) were diagnosed as spondylolysis based on a single-photon emission CT. Following the diagnosis, participants underwent MRI and CT scan imaging tests on the same day. The sensitivity and false-negative rate of the MRI and CT scans were analyzed. MRI test confirmed 13 (+) and 9 (−) results while CT test showed 17 (+) and 5 (−) results. The sensitivity and false-negative rate of MRI were, respectively, 59.1% (95% confidence interval [CI] = 36.7% to 78.5%) and 40.9% (95% CI = 21.5% to 63.3%). Furthermore, the sensitivity and false-negative rate of CT scan were 77.3% (95% CI = 54.2% to 91.3%) and 22.7% (95% CI = 0.09% to 45.8%). Our results indicated that CT scan is a more accurate imaging modality to diagnose spondylolysis compared with MRI in young athletes.


Cartilage ◽  
2020 ◽  
pp. 194760352094294
Author(s):  
Oliver D. Jungesblut ◽  
Menard Moritz ◽  
Alexander S. Spiro ◽  
Ralf Stuecker ◽  
Martin Rupprecht

Objective Fixation of unstable osteochondritis dissecans (OCD) lesions and displaced osteochondral fragments are frequently performed procedures in pediatric orthopedic surgery. Since 2018, CE-certified MAGNEZIX pins are used in our institution in these cases. The aim of this study was (1) to analyze safety, efficiency, and limitations of magnesium-pin-based fixation of unstable OCD lesions and displaced osteochondral fragments and (2) to report clinical and radiological outcomes at short-term follow-up (FU). Design In this prospective cohort study, 19 patients (10 girls and 9 boys) were included. Inclusion criteria were (1) magnetic resonance imaging–confirmed unstable OCD lesion or displaced osteochondral fragment, (2) fixation with magnesium-based pins, and (3) minimum FU of 6 months. X-rays were taken 6 weeks and 6 months after operation and magnetic resonance imaging scans every 4 to 6 months to assess the healing progress. Results In total 67 pins were used, with a mean of 3.6 ± 1.4 per patient. Average age at surgery was 13.7 years (11-17 years). Mean time of operation was 56 ± 31 minutes, including arthroscopy, fixation, and patellar realignment ( n = 6). No intraoperative complications occurred. Average FU was 11.3 ± 4.2 months (6-20 months). No redislocation or new dislocation occurred. Until now a complete radiographic healing occurred in 12 cases. Due to an implant failure in one case 11 weeks after the index surgery a revision became necessary. Conclusions In short-term FU of 11 ± 4 months MAGNEZIX pins provide high stability after fixation of unstable OCDs and displaced osteochondral fragments leading to uncomplicated and timely healing.


2016 ◽  
Vol 14 (3) ◽  
pp. e06R01 ◽  
Author(s):  
Anna Carabús ◽  
Marina Gispert ◽  
Maria Font-i-Furnols

Image techniques are increasingly being applied to livestock animals. This paper overviews recent advances in image processing analysis for live pigs, including ultrasound, visual image analysis by monitoring, dual-energy X-ray absorptiometry, magnetic resonance imaging and computed tomography. The methodology for live pigs evaluation, advantages and disadvantages of different devices, the variables and measurements analysed, the predictions obtained using these measurements and their accuracy are discussed in the present paper. Utilities of these technologies for livestock purposes are also reviewed. Computed tomography and magnetic resonance imaging yield useful results for the estimation of the amount of fat and lean mass either in live pigs or in carcasses. Ultrasound is not sufficiently accurate when high precision in estimating pig body composition is necessary but can provide useful information in agriculture to classify pigs for breeding purposes or before slaughter. Improvements in factors, such as the speed of scanning, cost and image accuracy and processing, would advance the application of image processing technologies in livestock animals.


2021 ◽  
Author(s):  
Armin M. Scholz ◽  
Goran Kusec ◽  
Alva D. Mitchell ◽  
Ulrich Baulain

Regional markets require a large variety of pig breeds and pork products. Noninvasive techniques like computed tomography, magnetic resonance imaging, dual-energy X-ray absorptiometry, computer vision, or, very often, ultrasound helps to provide the information required for breeding, quality control, payment, and processing. Meanwhile, computed tomography is being used as phenotyping tool by leading pig breeding organizations around the world, while ultrasound B- or A-mode techniques belong to the standard tools, especially to measure subcutaneous fat and muscle traits. Magnetic resonance imaging and dual-energy X-ray absorptiometry, however, are still mainly used as research tools to develop and characterize new phenotypic traits, which usually could not be measured without slaughtering the breeding pigs. A further noninvasive method—already used on a commercial basis, not only in abattoirs—is video 2D or 3D imaging. This chapter will review the latest developments for these noninvasive techniques.


Sign in / Sign up

Export Citation Format

Share Document