scholarly journals Chemical Composition of the Essential Oil of the Flowering Aerial Parts of Craniotome Furcata

2008 ◽  
Vol 3 (6) ◽  
pp. 1934578X0800300
Author(s):  
Rajesh K. Joshi ◽  
Chitra Pande

The composition of the steam volatile constituents of the flowering aerial parts of Craniotome furcata (Link.) O. Kuntze was determined by GC, GC/MS and NMR. The oil was constituted mainly of sesquiterpene hydrocarbons (68%). The main constituents were germacrene D (49.2%), germacrene D-4-ol (8.8%), epi-α-cadinol (5.9%) and 10- epi-γ-eudesmol (4.2%). Germacrene-derivative constituents represented 61.5% of the total oil.

2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The essential oil obtained from the aerial parts of Croton bonplandianus Baill. was analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). A total of 37 compounds have been identified, representing 96.2% of the total oil. The main constituents were identified as β-caryophyllene (16.7%), germacrene D (14.7%), borneol (8.3%), Z-β-damascenone (6.(%), isobornyl acetate (6.2%), α-humulene (6.1%), germacrene A (5.2%) and caryophyllene oxide (4.5%). The oil was rich in sesquiterpene hydrocarbons (60.1%).


2013 ◽  
Vol 8 (8) ◽  
pp. 1934578X1300800
Author(s):  
Rajesh K. Joshi

The hydro-distilled essential oil obtained from the flowering aerial parts of Lepidagathis fasciculata Nees was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). A total of 38 compounds have been identified, representing 91.2% of the total oil. The major constituents were δ-cadinene (14.4 %), γ-curcumene (9.8%), sandaracopimarinal (6.6%), germacrene D-4-ol (6.1%), cembrene (5.0%), β-calacorene (3.6%), ar-curcumene (3.3%), trans–4,10-epoxy-amorphane (3.2%), abietatriene (2.9%), and α-cubebene (2.8%). The oil was rich in sesquiterpene hydrocarbons (43.8%).


2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900
Author(s):  
Rajesh K. Joshi

The chemical composition of the hydro-distilled essential oil obtained from the flowering aerial parts of Vernonia albicans DC. (Asteraceae) was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID) and gas chromatography coupled with a mass spectrometry (GC/MS). Thirty-nine compounds have been identified, representing 97.5% of the total oil. The major constituents were β-caryophyllene (34.3%), γ-amorphene (19.5%), 9-epi-β-caryophyllene (6.9%), and α-pinene (6.9%). The oil was found to be rich in sesquiterpene hydrocarbons (73.9%).


2007 ◽  
Vol 2 (12) ◽  
pp. 1934578X0700201 ◽  
Author(s):  
Ali Sonboli ◽  
Mohammad Reza Kanani ◽  
Morteza Yousefzadi ◽  
Mehran Mojarrad

The aerial parts of Tetrataenium nephrophyllum were collected at the flowering stage, hydrodistilled, and the essential oil was analyzed by GC and GC-MS. Forty components accounting for 97.9% of the total oil were identified. Germacrene D (38.5%), 2-ethylhexyl acetate (11.2%), n-octyl 2-methylbutanoate (9.2%) and geranyl isovalerate (8.3%) were the major constituents. Sesquiterpene hydrocarbons (51.3%) and aliphatic esters (40.4%) were found to be the main group of compounds. The antimicrobial activity of the essential oil of T. nephrophyllum was determined against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae), as well as three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The bioassay showed that the oil exhibited moderate to high antimicrobial activity.


2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Rajesh K. Joshi

The aim of the present study was to investigate and identify the essential oil constituents of Leucas indica (L.) R.Br. (Lamiaceae). The chemical composition of the hydro-distilled essential oil was obtained from the flowering aerial parts of L. indica for the first time. The oil was analyzed by gas chromatography equipped with flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS). Fifty-six compounds were identified, representing 99.1% of the total oil. The main constituents were β-caryophyllene (51.1%) and α-caryophyllene (10.2%). The oil was found to be rich in sesquiterpene hydrocarbons (71.8%).


2013 ◽  
Vol 59 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Vahid Rowshan ◽  
Ameneh Tarakemeh

Summary Scaligeria meifolia Boiss., belonging to the Apiaceae family, grows wild in Iran. The essential oil from aerial parts of S. meifolia were obtained by hydrodistillation and analyzed by GC and GC/MS. Thirty-one constituents representing 99.98% of total oil components were identified. The main constituents of the essential oil were germacrene-D, (24.2%), germacrene-B (14.8%), limonene (14.2%), γ-elemene (11.6 %) and β-elemene (5.2%).


2009 ◽  
Vol 4 (7) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Rajesh K. Joshi ◽  
Chitra Pande ◽  
Mohammad H. K. Mujawar ◽  
Sanjiva D. Kholkute

The essential oil composition of the aerial parts of Anaphalis nubigena DC. var. monocephala (DC.) C. B. Clarke collected from Pindari glacier at a height of 3300 m, was analyzed by using GC and GC/MS. Sixty components were identified, accounting for 95.9% of the total oil. The main constituents were α-guaiene (12.3%), γ-muurolene (10.4%), γ-cadinene (8.3%), α-muurolol (7.4%), α-gurjunene (6.0%) and α-bulnesene (5.8%). The oil was found to be rich in sesquiterpene hydrocarbons (60.1%). The oil was active against Escherichia coli (NCIM 2065) and Klebsiella pneumoniae (NCIM 2957), with MIC values of 125 μg/mL and 500 μg/mL, respectively.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Megil J. McNeil ◽  
Roy B. R. Porter ◽  
Lawrence A. D. Williams

The chemical composition of the essential oil obtained from the aerial parts of Cleome serrata by hydrodistillation was analyzed by employing GC-FID, GC-MS and RI. Fourteen compounds comprising 90.4% of the total oil composition were characterized. The main components identified were ( Z)-phytol (53.0%) and di(2-ethylhexyl)-phthalate (DEHP) (14.7%). The oil was evaluated for its in vitro antimicrobial activities against nine pathogenic microorganisms using the filter paper disc diffusion method. Moderate antimicrobial activity was observed against five of the pathogens assayed. In addition, the essential oil was tested against the sweet potato weevil, Cylas formicarius elegantulus. Strong knockdown insecticidal activity was observed.


2011 ◽  
Vol 6 (12) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Lalit Mohan ◽  
Anuradha Negi ◽  
Anand B. Melkani ◽  
Vasu Dev

The composition of steam volatile oil from aerial parts of Salvia mukerjeei Bennet & Raizada (Lamiaceae) was analyzed by capillary GC and GCMS. The oil was rich in sesquiterpene hydrocarbons (67.3%). Among 71 identified constituents representing 91.7% of the oil, β-caryophyllene (28.7%), γ-muurolene (15.5%) and dehydro-aromadendrane (9.5%), were the principal constituents. The oil was tested against ten bacterial strains and was active against Enterococcus faecalis, Erwinia chrysanthemi and Agrobacterium tumefaciens.


2015 ◽  
Vol 10 (8) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Jelena G. Stamenković ◽  
Gordana S. Stojanović ◽  
Ivana R. Radojković ◽  
Goran M. Petrović ◽  
Bojan K Zlatković

The present study reports the chemical composition on the essential oil obtained from fresh roots, stems, inflorescences and fruits of Chaerophyllum temulum. In all samples, except the roots, the most dominant components were sesquiterpene hydrocarbons. ( Z)-Falcarinol was the principal constituent of the root essential oils (61.7% at the flowering stage and 62.3% at the fruiting stage). The blossom oil was dominated by ( Z,E)-α-farnesene (23.4%), ( E)-β-farnesene (9.0%) and germacrene D-4-ol (9%), whereas the oil from the fruit had germacrene D-4-ol (27.6%) as its main compound, accompanied by ( Z,E)-α-farnesene (13.4%). Germacrene D was the most abundant component of the stem essential oil (38.4% at the flowering stage and 32.5% at the fruiting stage). The obtained results show that the qualitative composition of the oil depends on the part of the plant which is analyzed, while the quantitative composition of the main components depends on the growing stage of the plant.


Sign in / Sign up

Export Citation Format

Share Document