scholarly journals Chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold

2013 ◽  
Vol 4 ◽  
pp. 204173141351678 ◽  
Author(s):  
Kavi H Patel ◽  
Leila Nayyer ◽  
Alexander M Seifalian
2020 ◽  
Vol 21 (11) ◽  
pp. 3924 ◽  
Author(s):  
Jessica Hedderich ◽  
Karima El Bagdadi ◽  
Peter Angele ◽  
Susanne Grässel ◽  
Andrea Meurer ◽  
...  

Bone marrow-derived mesenchymal stem cells (BMSCs) represent an alternative to chondrocytes to support cartilage regeneration in osteoarthritis (OA). The sympathetic neurotransmitter norepinephrine (NE) has been shown to inhibit their chondrogenic potential; however, their proliferation capacity under NE influence has not been studied yet. Therefore, we used BMSCs obtained from trauma and OA donors and compared the expression of adrenergic receptors (AR). Then, BMSCs from both donor groups were treated with NE, as well as with combinations of NE and α1-, α2- or β1/2-AR antagonists (doxazosin, yohimbine or propranolol). Activation of AR-coupled signaling was investigated by analyzing ERK1/2 and protein kinase A (PKA) phosphorylation. A similar but not identical subset of ARs was expressed in trauma (α2B-, α2C- and β2-AR) and OA BMSCs (α2A-, α2B-, and β2-AR). NE in high concentrations inhibited the proliferation of both trauma and OA BMCSs significantly. NE in low concentrations did not influence proliferation. ERK1/2 as well as PKA were activated after NE treatment in both BMSC types. These effects were abolished only by propranolol. Our results demonstrate that NE inhibits the proliferation and accordingly lowers the regenerative capacity of human BMSCs likely via β2-AR-mediated ERK1/2 and PKA phosphorylation. Therefore, targeting β2-AR-signaling might provide novel OA therapeutic options.


2017 ◽  
Vol 8 (6) ◽  
pp. e2851-e2851 ◽  
Author(s):  
Tongmeng Jiang ◽  
Guojie Xu ◽  
Qiuyan Wang ◽  
Lihui Yang ◽  
Li Zheng ◽  
...  

Abstract In vitro cultured autologous mesenchymal stem cells (MSCs) within passage 5 have been approved for clinical application in stem cell-based treatment of cartilage defects. However, their chondrogenic potential has not yet been questioned or verified. In this study, the chondrogenic potential of bone marrow MSCs at passage 3 (P3 BMSCs) was investigated both in cartilage repair and in vitro, with freshly isolated bone marrow mononuclear cells (BMMNCs) as controls. The results showed that P3 BMSCs were inferior to BMMNCs not only in their chondrogenic differentiation ability but also as candidates for long-term repair of cartilage defects. Compared with BMMNCs, P3 BMSCs presented a decay in telomerase activity and a change in chromosomal morphology with potential anomalous karyotypes, indicating senescence. In addition, interindividual variability in P3 BMSCs is much higher than in BMMNCs, demonstrating genomic instability. Interestingly, remarkable downregulation in cell cycle, DNA replication and mismatch repair (MMR) pathways as well as in multiple genes associated with telomerase activity and chromosomal stability were found in P3 BMSCs. This result indicates that telomerase and chromosome anomalies might originate from expansion, leading to impaired stemness and pluripotency of stem cells. In vitro culture and expansion are not recommended for cell-based therapy, and fresh BMMNCs are the first choice.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202922 ◽  
Author(s):  
Akari Sasaki ◽  
Mitsuru Mizuno ◽  
Nobutake Ozeki ◽  
Hisako Katano ◽  
Koji Otabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document