scholarly journals Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns

2020 ◽  
Vol 18 ◽  
pp. 228080002094732
Author(s):  
Satheesh B Haralur ◽  
Alaa Ali Alamrey ◽  
Shatha Abdulrahman Alshehri ◽  
Danyah Saeed Alzahrani ◽  
Mohammed Alfarsi

Objective: The aim was to compare the fracture strength of Molar endocrowns fabricated from different all-ceramic materials and various preparation designs. Materials and methods: Ninety extracted human molar teeth were root canal treated and randomly divided into three groups according to the all ceramic materials used for fabrication of the endocrowns ( n = 30): (1) Lithium disilicate (IPS e.max Press); (2) Polymer infiltrated ceramic (Vita Enamic); (3) High translucency zirconia (Ceramill Zolid HT). Each group was subdivided into 3 subgroups ( n = 10) according to the preparation design as 2 mm occlusal reduction, 4.5 mm occlusal reduction, and 4.5 mm occlusal reduction with 2 mm radicular extension. The endocrowns from each material were fabricated and surface treated according to the manufacturer’s recommendations. After cementation with self-adhesive resin luting cement, the specimens were stored in a humid environment for 72 hours and subsequently subjected to 5000 thermal cycles. After, a compressive, static-axial load was applied using a universal testing machine until failure. Load-to-failure was recorded (N) and the specimens were examined under a stereomicroscope to determine the failure type. The data was statistically analyzed using One-way ANOVA and Tukey HSD tests at p < 0.05. Results: The Lithium Disilicate endocrowns recorded the higher mean fracture strength for 4.5 mm occlusal thickness and 2 mm radicular extension at 3770.28 N and 3877.40 correspondingly. The High translucency zirconia endocrowns at conventional 2 mm thickness showed the highest mean fracture load (3533.34 N). Even though polymer infiltrated ceramic endocrowns displayed comparatively lesser fracture load; they recorded the predominantly favorable fractures. Conclusions: Increased occlusal thickness showed a significant improvement in fracture strength of lithium disilicate and polymer infiltrated ceramic molar endocrowns. Although the 2 mm radicular extension had the substantial enhancement of fracture strength in high translucency zirconia, it resulted in more unfavorable failure types.

2021 ◽  
Vol 45 (3) ◽  
pp. 171-176
Author(s):  
Brent Lin ◽  
Amit Khatri ◽  
Michael Hong

The purpose of this study was to determine and compare the shear force (N) required to fracture or dislodge an all-ceramic zirconia-based crown using different luting cement with those of polycarbonate crown and strip crown for the primary anterior teeth in vitro. Study design: Four groups of esthetic restoration for primary anterior teeth were tested for fracture strength: 1) Fifteen all-ceramic zirconia-based crowns cemented with glass ionomer cement, 2) Fifteen all-ceramic zirconia-based crowns bonded with a self-adhesive resin cement, 3) Fifteen polycarbonate crowns cemented with a polymer reinforced zinc-oxide eugenol and 4) Fifteen resin strip crowns. All restorations were placed and cemented on reproductions of dies in an independent laboratory at Delhi, India. All samples underwent loading until fracture or dislodgement with the Universal Testing Machine. The force in Newton (N) required to produce failure was recorded for each sample and the type of failures was also noted and characterized. One-way analysis of variance (ANOVA) test and the Tukey and Scheffe’s post hoc comparisons were used for statistical analyses. Results: In this invitro study, results were measured in Newtons (N). Group 1 (410.9±79.5 N) and Group 2 (420.5±57.8 N) had higher fracture strength than Group 3 (330.3±85.6 N) and Group 4 (268.4±28.2 N). These differences were statistically significant at P≤.05 among the sample groups. No significant difference was found between groups 1 and 2 (P = 0.984) nor between groups 3 and 4 (P =0.104). Among type of failures, majority of restoration fractures for zirconia-based crowns and resin strip crowns were due to cohesive failures and polycarbonate crowns had predominantly mixed failures. Conclusions: Under the limitations of this in vitro study, it could be concluded that all-ceramic zirconia-based crowns attained the highest fracture strength among all restorative samples tested regardless of the type of luting agent employed (P&lt;.01). Cohesive failures were commonly observed in the zirconia crowns and resin strip crowns, whereas polycarbonate crowns revealed predominately mixed failures.


2012 ◽  
Vol 13 (2) ◽  
pp. 210-215
Author(s):  
Firas Al Quran ◽  
Reem Haj-Ali

ABSTRACT Purpose The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Materials and methods Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Results Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p < 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens. How to cite this article Quran AF, Haj-Ali R. Fracture Strength of Three All-Ceramic Systems: Top-Ceram Compared with IPSEmpress and In-Ceram. J Contemp Dent Pract 2012;13(2): 210-215.


2011 ◽  
Vol 16 (4) ◽  
pp. 1105-1110 ◽  
Author(s):  
Munir Tolga Yucel ◽  
Isa Yondem ◽  
Filiz Aykent ◽  
Oğuz Eraslan

2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2015 ◽  
Vol 09 (02) ◽  
pp. 189-193 ◽  
Author(s):  
Bilge Gulsum Nur ◽  
Evren Ok ◽  
Mustafa Altunsoy ◽  
Mehmet Tanriver ◽  
Ismail Davut Capar

ABSTRACT Objective: The aim of this study was to compare the fracture strength of roots instrumented with three different single file rotary systems in curved mesial root canals of maxillary molars. Materials and Methods: Curvatures of 25°–35° on mesial roots of 60 maxillary molar teeth were sectioned below the cementoenamel junction to obtain roots 11 mm in length. The roots were balanced with respect to buccolingual and mesiodistal diameter and weight. They were distributed into three experimental groups and one control group (no instrumentation) (n = 15): Reciproc rotary file (R25, VDW, Munich, Germany), WaveOne Primary rotary file (Dentsply Tulsa Dental Specialties, Tulsa, UK) and OneShape (Micro-Mega, Besancon, France) rotary file. Vertical load was applied until fracture occurred. Data were statistically analyzed using one-way analysis of variance test (P < 0.05). Results: The mean fracture load was 412 ± 72 Newton (N) for the control group, 395 ± 69 N for the Reciproc group, 373 ± 63 N for the WaveOne group and 332 ± 68 N for the OneShape group. The fracture load differences among three experimental groups were not statistically significant (P > 0.05.) Whereas, the fracture loads of control and OneShape groups were significantly different (P = 0.012). Conclusions: Fracture resistance of the roots instrumented with WaveOne and Reciproc file systems were similar to the control group whereas it was observed that OneShape rotary file systems enhance the fracture strength of standardized curved roots when compared with the control group.


2015 ◽  
Vol 40 (2) ◽  
pp. 211-217 ◽  
Author(s):  
EM Bakeman ◽  
N Rego ◽  
Y Chaiyabutr ◽  
JC Kois

SUMMARY This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (p&lt;0.001); however, the thickness of ceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (p&lt;0.05). There was no significant difference in fracture resistance values between a lithium disilicate ceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.


2015 ◽  
Vol 41 (S1) ◽  
pp. 352-359 ◽  
Author(s):  
Tonino Traini ◽  
Roberto Sorrentino ◽  
Enrico Gherlone ◽  
Federico Perfetti ◽  
Patrizio Bollero ◽  
...  

Due to the brittleness and limited tensile strength of the veneering glass-ceramic materials, the methods that combine strong core material (as zirconia or alumina) are still under debate. The present study aims to evaluate the fracture strength and the mechanism of failure through fractographic analysis of single all-ceramic crowns supported by implants. Forty premolar cores were fabricated with CAD/CAM technology using alumina (n = 20) and zirconia (n = 20). The specimens were veneered with glass-ceramic, cemented on titanium abutments, and subjected to loading test until fracture. SEM fractographic analysis was also performed. The fracture load was 1165 (±509) N for alumina and 1638 (±662) N for zirconia with a statistically significant difference between the two groups (P = 0.026). Fractographic analysis of alumina-glass-ceramic crowns, showed the presence of catastrophic cracks through the entire thickness of the alumina core; for the zirconia-glass-ceramic crowns, the cracks involved mainly the thickness of the ceramic veneering layer. The sandblast procedure of the zirconia core influenced crack path deflection. Few samples (n = 3) showed limited microcracks of the zirconia core. Zirconia showed a significantly higher fracture strength value in implant-supported restorations, indicating the role played by the high resistant cores for premolar crowns.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4227
Author(s):  
Samer Al-Saleh ◽  
Turki W. Aboghosh ◽  
Mousa S. Hazazi ◽  
Khalid A. Binsaeed ◽  
Abdulaziz M. Almuhaisen ◽  
...  

The aim of the study was to compare microleakage and fracture loads of all ceramic crowns luted with conventional polymer resins and polymeric bioactive cements and to assess the color stability of polymeric bioactive cements. Seventy-five extracted premolar teeth were tested for fracture loads and microleakage in all-ceramic crowns cemented with two types of polymeric bioactive cements and resin cements. In addition, the degree of color change for each cement with coffee was assessed. Thirty maxillary premolar teeth for fracture loads and thirty mandibular premolar teeth for microleakage were prepared; standardized teeth preparations were performed by a single experienced operator. All prepared specimens were randomly distributed to three groups (n = 20) based on the type of cement, Group 1: resin cement (Multilink N); Group 2: polymeric bioactive cement (ACTIVA); Group 3: polymeric bioactive cement (Ceramir). The cementation procedures for all cements (Multilink, ACTIVA, and Ceramir) were performed according to the manufacturers’ instructions. All specimens were aged using thermocycling for 30,000 cycles (5–55 °C, dwell time 30 s). These specimens were tested using the universal testing machine for fracture strength and with a micro-CT for microleakage. For the color stability evaluation, the cement specimens were immersed in coffee and evaluated with a spectrometer. Results: The highest and lowest means for fracture loads were observed in resin cements (49.5 ± 8.85) and Ceramir (39.8 ± 9.16), respectively. Ceramir (2.563 ± 0.71) showed the highest microleakage compared to resin (0.70 ± 0.75) and ACTIVA (0.61 ± 0.56). ACTIVA cements showed comparable fracture loads, microleakage, and stain resistance compared to resin cements.


2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Salma Alghalayini ◽  
Kamal Khaled Ebeid ◽  
Ayman Aldahrab ◽  
Marwa Wahsh

Objective: To evaluate ability of Nano Ceramic Composite endocrown to withstand occlusal forces when used in the anterior region. Material and Methods: Eighty endodontically treated maxillary central incisors teeth were randomly divided into two main groups according to the restoration type.  40 of these teeth were post, core and crown restorations and 40 were endocrown restorations.  Then they were divided by halves into two subgroups according to the material used 20 were made with Lava Ultimate and the other 20 with IPS e.max. Each subgroup was then further subdivided into two divisions according to the remaining tooth structure above the CEJ (n=10): 2 mm and 0.5 mm above the CEJ. After teeth preparation, the restorations were all made by CAD/CAM system (Cerec MCXL). All samples had undergone cyclic fatigue testing, and then loaded to fracture using a universal testing machine. The specimens were measured and statistically analyzed using Mann-Whitney test for comparing the mean changes between the groups. Results:  Lava Ultimate showed higher mean fracture load values than IPS e.max specimens. Conclusion: Endocrowns were found to be more favorable when used on endodontically treated teeth than the conventional post, core and crown restorations.KEYWORDSEndocrowns; All-ceramic; Fracture; Cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document