scholarly journals A Comparison of Knee Abduction Angles Measured by a 3D Anatomic Coordinate System Versus Videographic Analysis: Implications for Anterior Cruciate Ligament Injury

2019 ◽  
Vol 7 (1) ◽  
pp. 232596711881983 ◽  
Author(s):  
Zoë A. Englander ◽  
Hattie C. Cutcliffe ◽  
Gangadhar M. Utturkar ◽  
William E. Garrett ◽  
Charles E. Spritzer ◽  
...  

Background: Knee positions involved in noncontact anterior cruciate ligament (ACL) injury have been studied via analysis of injury videos. Positions of high ACL strain have been identified in vivo. These methods have supported different hypotheses regarding the role of knee abduction in ACL injury. Purpose/Hypothesis: The purpose of this study was to compare knee abduction angles measured by 2 methods: using a 3-dimensional (3D) coordinate system based on anatomic features of the bones versus simulated 2-dimensional (2D) videographic analysis. We hypothesized that knee abduction angles measured in a 2D videographic analysis would differ from those measured from 3D bone anatomic features and that videographic knee abduction angles would depend on flexion angle and on the position of the camera relative to the patient. Study Design: Descriptive laboratory study. Methods: Models of the femur and tibia were created from magnetic resonance images of 8 healthy male participants. The models were positioned to match biplanar fluoroscopic images obtained as participants posed in lunges of varying flexion angles (FLAs). Knee abduction angle was calculated from the positioned models in 2 ways: (1) varus-valgus angle (VVA), defined as the angle between the long axis of the tibia and the femoral transepicondylar axis by use of a 3D anatomic coordinate system; and (2) coronal plane angle (CPA), defined as the angle between the long axis of the tibia and the long axis of the femur projected onto the tibial coronal plane to simulate a 2D videographic analysis. We then simulated how changing the position of the camera relative to the participant would affect knee abduction angles. Results: During flexion, when CPA was calculated from a purely anterior or posterior view of the joint—an ideal scenario for measuring knee abduction from 2D videographic analysis—CPA was significantly different from VVA ( P < .0001). CPA also varied substantially with the position of the camera relative to the participant. Conclusion: How closely CPA (derived from 2D videographic analysis) relates to VVA (derived from a 3D anatomic coordinate system) depends on FLA and camera orientation. Clinical Relevance: This study provides a novel comparison of knee abduction angles measured from 2D videographic analysis and those measured within a 3D anatomic coordinate system. Consideration of these findings is important when interpreting 2D videographic data regarding knee abduction angle in ACL injury.

Author(s):  
Ariful I. Bhuiyan ◽  
Javad Hashemi ◽  
James R. Slauterbeck

The geometry of the tibial plateau and the femoral condyles are emerging as key parameters to be studied as anterior cruciate ligament (ACL) injury risk factors. In this paper, we study the role of curved profile of the medial compartment of the tibia in a sagittal plane as a critical risk factor for the anterior cruciate ligament (ACL) injuries. The curvature of the mid-medial compartment of Tibia in 40 uninjured controls (21 women and 19 men) and 44 anterior cruciate ligament-injured cases (23 women and 21 men) were measured using magnetic resonance images and in-house matlab programming. We hypothesized that the Individuals with a less curved profile in the medial compartment of the tibia are at increased risk of suffering an anterior cruciate ligament injury compared to those with larger curved profiles. Based on t-tests, we established that the uninjured controls had larger curvature (p<0.05) compared to the injured cases. Biomechanically speaking a larger curvature of the tibia could prevent excessive sliding movement of femur with respect to the tibia, and thus could reduce the ACL strain. We suggest that future studies are needed to confirm this relationship and to evaluate the potential role of this curved profile of tibia in the risk of ACL injury.


Author(s):  
Ariful I. Bhuiyan ◽  
Javad Hashemi ◽  
Ryan E. Breighner ◽  
James R. Slauterbeck

The geometry of the tibial plateau as well as the femoral condyles are emerging as key parameters to be studied as anterior cruciate ligament (ACL) injury risk factors. In this paper, we study the role of tibial eminence size as a potentially important characteristic of the tibial plateau in loading and or protecting the ACL from injury. The volume of Tibial eminence in 52 uninjured controls (32 women and 20 men) and 44 anterior cruciate ligament-injured cases (23 women and 21 men) were measured using magnetic resonance images and 3-d image reconstruction using commercial software Analyze 9.0. We hypothesized that the Individuals with a small tibial eminence are at increased risk of suffering an anterior cruciate ligament injury compared with those with larger tibial eminences. Based on t-tests, we established that the uninjured controls had larger tibial eminences (p<0.05) compared with the injured cases. Biomechanically speaking a larger tibial eminence could prevent excessive medio-lateral movement of femur with respect to the tibia. A larger eminence could also protect the knee from large magnitude rotational movements. We suggest that future studies are needed to confirm this relationship and to evaluate the potential role of the tibial eminence size in the risk of ACL injury.


2019 ◽  
Vol 47 (4) ◽  
pp. 1602-1609 ◽  
Author(s):  
Mengquan Huang ◽  
Yubiao Li ◽  
Naiming Guo ◽  
Chunlai Liao ◽  
Bin Yu

Objectives This study was performed to compare the intercondylar notch angle (INA) and tibial slope in patients with and without anterior cruciate ligament (ACL) injury and determine the risk factors and influence of these anatomic variations on ACL injury. Methods Participants with and without non-contact ACL injuries were included in the patient and control groups, respectively. The INA (formed by the femoral axis and Blumensaat line), lateral tibial slope (LTS), and medial tibial slope (MTS) were measured on magnetic resonance images. Comparisons were performed between the two groups. A binary logistic regression model was used to determine the influence of the variables on ACL injury. Results Fifty-two participants were included in each group. The INA was significantly smaller and the LTS was significantly greater in the patients than in the controls. No difference was found in the MTS between the two groups. The area under the receiver operating characteristic curve for the combination of the INA and LTS was 0.776 (95% confidence interval, 0.688–0.864). Conclusions The INA was smaller and the LTS was greater in patients with than without ACL tears. The INA in combination with the LTS could be used to predict ACL injury.


2019 ◽  
Vol 47 (14) ◽  
pp. 3365-3372 ◽  
Author(s):  
Dimitris Dimitriou ◽  
Zhongzheng Wang ◽  
Diyang Zou ◽  
Tsung-Yuan Tsai ◽  
Naeder Helmy

Background: Although the femoral tunnel position is crucial to anatomic single-bundle anterior cruciate ligament (ACL) reconstruction, the recommendations for the ideal femoral footprint position are mostly based on cadaveric studies with small sample sizes, elderly patients with unknown ACL status, and 2-dimensional techniques. Furthermore, a potential difference in the femoral ACL footprint position and ACL orientation between ACL-ruptured and ACL-intact knees has not been reported in the literature. Hypothesis: The femoral ACL footprint position and ACL orientation vary significantly between ACL-ruptured and matched control ACL-intact knees. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Magnetic resonance images of the knees of 90 patients with an ACL rupture and 90 matched control participants who had a noncontact knee injury without an ACL rupture were used to create 3-dimensional models of the femur and tibia. The ACL footprints were outlined on each model, and their positions (normalized to the lateral condyle width) as well as ACL orientations were measured with an anatomic coordinate system. Results: The femoral ACL footprint in patients with an ACL rupture was located at 36.6% posterior and 11.2% distal to the flexion-extension axis (FEA). The ACL orientation was 46.9° in the sagittal plane, 70.3° in the coronal plane, and 20.8° in the transverse plane. The ACL-ruptured group demonstrated a femoral ACL footprint position that was 11.0% more posterior and 7.7% more proximal than that of the control group (all P < .01). The same patients also exhibited 5.7° lower sagittal elevation, 3.1° higher coronal plane elevation, and 7.9° lower transverse plane deviation (all P < .01). The optimal cutoff value of the femoral ACL footprint position to prevent an ACL rupture was at 30% posterior and 12% distal to the FEA. Conclusion: The ACL femoral footprint position might be a predisposing factor to an ACL rupture. Patients with a >30% posterior and <12% distal position of the femoral ACL footprint from the FEA might have a 51.2-times increased risk of an ACL rupture.


2009 ◽  
Vol 44 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Jon G. Divine ◽  
Eric J. Wall ◽  
Leamor Kahanov ◽  
...  

Abstract Objective: To present a unique case of a young pubertal female athlete who was prospectively monitored for previously identified anterior cruciate ligament (ACL) injury risk factors for 3 years before sustaining an ACL injury. Background: In prospective studies, previous investigators have examined cross-sectional measures of anatomic, hormonal, and biomechanical risk factors for ACL injury in young female athletes. In this report, we offer a longitudinal example of measured risk factors as the participant matured. Differential Diagnosis: Partial or complete tear of the ACL. Measurements: The participant was identified from a cohort monitored from 2002 until 2007. No injury prevention training or intervention was included during this time in the study cohort. Findings: The injury occurred in the year after the third assessment during the athlete's club basketball season. Knee examination, magnetic resonance imaging findings, and arthroscopic evaluation confirmed a complete ACL rupture. The athlete was early pubertal in year 1 of the study and pubertal during the next 2 years; menarche occurred at age 12 years. At the time of injury, she was 14.25 years old and postpubertal, with closing femoral and tibial physes. For each of the 3 years before injury, she demonstrated incremental increases in height, body mass index, and anterior knee laxity. She also displayed decreased hip abduction and knee flexor strength, concomitant with increased knee abduction loads, after each year of growth. Conclusions: During puberty, the participant increased body mass and height of the center of mass without matching increases in hip and knee strength. The lack of strength and neuromuscular adaptation to match the increased demands of her pubertal stature may underlie the increased knee abduction loads measured at each annual visit and may have predisposed her to increased risk of ACL injury.


2005 ◽  
Vol 33 (4) ◽  
pp. 492-501 ◽  
Author(s):  
Timothy E. Hewett ◽  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Robert S. Heidt ◽  
Angelo J. Colosimo ◽  
...  

Background Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. Hypothesis Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. Study Design Cohort study; Level of evidence, 2. Methods There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. Results Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P <. 05) at landing was 8° greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P <. 001) and 20% higher ground reaction force (P <. 05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. Conclusion Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. Clinical Relevance Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.


Author(s):  
Yu-Lun Huang ◽  
Kuang-Wei Lin ◽  
Li-Wei Chou ◽  
Eunwook Chang

Athletic taping is widely used in sports to prevent injury. However, the effect of anterior cruciate ligament (ACL) protective taping on neuromuscular control during dynamic tasks remains unclear. Therefore, this study aimed to investigate the immediate effect of ACL protective taping on landing mechanics and muscle activations during side hops in healthy individuals. Fifteen healthy individuals (11 males and 4 females; age, 23.1 ± 1.4 years; height, 175.1 ± 10.4 cm; weight, 66.3 ± 11.2 kg) volunteered to participate in this study. Landing mechanics and muscle activations were measured while each participant performed single-leg hops side-to-side for ten repetitions with and without taping. An optical motion capture system and two force plates were used to collect the kinematic and kinetic data during the side hops. Surface electromyogram recordings were performed using a wireless electromyography system. Paired t-tests were performed to determine the differences in landing mechanics and muscle activations between the two conditions (taping and non-taping). The level of significance was set at p < 0.05. Compared with the non-taping condition, participants landed with a smaller knee abduction angle, greater knee external rotation angle, and smaller knee extensor moment in the taping condition. Given that greater knee abduction, internal rotation, and knee extension moment are associated with a greater risk of ACL injury, our findings suggest that ACL protective taping can have an immediate effect on dynamic knee stability. Clinicians should consider using ACL protective taping to facilitate the use of favorable landing mechanics for ACL injuries.


2020 ◽  
Vol 54 (9) ◽  
pp. 520-527 ◽  
Author(s):  
Guri Ranum Ekås ◽  
Clare L Ardern ◽  
Hege Grindem ◽  
Lars Engebretsen

ObjectiveTo investigate the risk of new meniscal tears after treatment for anterior cruciate ligament (ACL) injury, in children and adults with and without ACL reconstruction.DesignPrognosis systematic review (PROSPERO registration number CRD42016036788).MethodsWe searched Embase, Ovid Medline, Cochrane, CINAHL, SPORTDiscus, PEDro and Google Scholar from inception to 3rd May 2018. Eligible articles included patients with ACL injury (diagnosis confirmed by MRI and/or diagnostic arthroscopy), reported the number of meniscal tears at the time of ACL injury diagnosis/start of treatment and reported the number of new meniscal tears that subsequently occurred. Articles with fewer than 20 patients at follow-up, and articles limited to ACL revision surgery or multi-ligament knee injuries were excluded. Two independent reviewers screened articles, assessed eligibility, assessed risk of bias and extracted data. We judged the certainty of evidence using the Grading of Recommendations Assessment Development and Evaluation (GRADE) working group methodology.ResultsOf 75 studies included in the systematic review, 54 studies with 9624 patients and 501 new meniscal tears were appropriate for quantitative analysis. Heterogeneity precluded data pooling. The risk of new meniscal tears was 0%–21% when follow-up was <2 years, 0%–29% when follow-up was 2 to 5 years, 5%–52% when follow-up was 5 to 10 years and 4%–31% when follow-up was longer than 10 years. The proportion of studies with high risk of selection, misclassification and detection bias was 84%, 69% and 68%, respectively. Certainty of evidence was very low.ConclusionNew meniscal tears occurred in 0%–52% of patients between 4 months and 20 years (mean 4.9±4.4 years) following treatment for ACL injury. The certainty of evidence was too low to guide surgical treatment decisions. This review cannot conclude that the incidence of new meniscal tears is lower if ACL injury is treated with surgery compared with treatment with rehabilitation only.


Sign in / Sign up

Export Citation Format

Share Document