scholarly journals 2′-Fucosyllactose Is Well Tolerated in a 100% Whey, Partially Hydrolyzed Infant Formula With Bifidobacterium lactis: A Randomized Controlled Trial

2019 ◽  
Vol 6 ◽  
pp. 2333794X1983399 ◽  
Author(s):  
Heidi M. Storm ◽  
Julie Shepard ◽  
Laura M. Czerkies ◽  
Brian Kineman ◽  
Sarah S. Cohen ◽  
...  

Human milk oligosaccharides are important components of breast milk. We evaluated feeding tolerance of the human milk oligosaccharide 2′-fucosyllactose (2′FL) in a 100% whey, partially hydrolyzed infant formula with the probiotic Bifidobacterium animalis ssp lactis strain Bb12 ( B lactis; Test) as compared with the same formula without 2′FL (Control) in a randomized controlled trial of healthy infants enrolled at 2 weeks of age (±5 days). After 6 weeks of feeding the assigned formula, the primary outcome of tolerance was assessed using the Infant Gastrointestinal Symptom Questionnaire. Stooling, vomiting, spit-up, crying, and fussing were compared between groups. Seventy-nine infants were enrolled and 63 completed the study per protocol (30 Test, 33 Control). Infant Gastrointestinal Symptom Questionnaire scores were similar between groups (Test 20.9 ± 4.8, Control 20.7 ± 4.3, P = .82). Partially hydrolyzed infant formula with 2′FL and B lactis is tolerated well, as confirmed by a validated multi-symptom index.

Author(s):  
Elvira Estorninos ◽  
Rachel B Lawenko ◽  
Eisel Palestroque ◽  
Norbert Sprenger ◽  
Jalil Benyacoub ◽  
...  

Abstract Background Bovine milk-derived oligosaccharides (MOS) containing primarily galacto-oligosaccharides with inherent levels of sialylated oligosaccharides can be added to infant formula to enhance the oligosaccharide profile. Objective To investigate the effects of a MOS-supplemented infant formula on gut microbiota and intestinal immunity. Methods In a double-blind, randomized, controlled trial, healthy-term formula-fed infants aged 21–26 days either received an intact protein cow's milk-based formula (control group, CG, n = 112) or the same formula containing 7.2 g MOS/L (experimental group, EG, n = 114) until age 6 months. Exclusively human milk-fed infants (HFI, n = 70) from an observational study served as reference. Fecal samples collected at baseline, 2.5 and 4 months of age were assessed for microbiota (16S ribosomal ribonucleic acid—based approaches), metabolites and biomarkers of gut health and immune response. Results At age 2.5 and 4 months, redundancy analysis (P = 0.002) and average phylogenetic distance (P < 0.05) showed that the overall microbiota composition in EG was different from CG and closer to that of HFI. Similarly, EG caesarean-born infants were different from CG caesarean- or vaginally-born infants and approaching HFI vaginally-born infants. Relative bifidobacteria abundance was higher in EG vs. CG (P < 0.05) approaching HFI. At age 4 months, counts of Clostridioides difficile and Clostridium perfringens were ∼90% (P < 0.001) and ∼65% (P < 0.01) lower in EG vs. CG, respectively. Mean (95%CI) fecal secretory immunoglobulin A (IgA) in EG was twice that of CG [70 (57,85) vs. 34 (28,42) mg/g, P < 0.001] and closer to HFI. Fecal oral polio vaccine-specific IgA was ∼50% higher in EG vs. CG (P = 0.065). Compared to CG, EG and HFI had lower fecal calcium excretion (by ∼30%) and fecal pH (P < 0.001), and higher lactate concentration (P < 0.001). Conclusions Infant formula with MOS shifts the gut microbiota and metabolic signature closer to that of HFI, has a strong bifidogenic effect, reduces fecal pathogens, and improves intestinal immune response.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e28010 ◽  
Author(s):  
Pasqua Piemontese ◽  
Maria L. Giannì ◽  
Christian P. Braegger ◽  
Gaetano Chirico ◽  
Christoph Grüber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document