Bovine Milk
Recently Published Documents


TOTAL DOCUMENTS

2718
(FIVE YEARS 781)

H-INDEX

96
(FIVE YEARS 31)

Author(s):  
Heba T. Elbalkiny ◽  
Ali M. Yehia

Author(s):  
Chengliang Zhang ◽  
Xiaoxu Lu ◽  
Jiajia Hu ◽  
Ping Li ◽  
Jianqin Yan ◽  
...  

Author(s):  
Shefali Giri ◽  
Priyanka Paul Madhu ◽  
Kumar Gaurav Chhabra ◽  
Gopika Mahure ◽  
Shailey Chandak

To assess the cariogenic potential of almond milk, soya milk, coconut milk and bovine milk, was evaluated to check ability to enable Streptococcus mutans association formed, acid manufacturing, as well as their ability to buffer pH transforms. The baseline non stimulated whole salivary sample (2.5-5 ml) will be collected from the students in the morning at least 1 hr after breakfast. The salivary samples (pre-test and post-test) will be collected and tested for the CFUs. Salivary samples are transported in a plastic container to the microbiological laboratory. They were then tested for the number of CFUs for S. mutans using mitis salivarius bacitracin agar. Soya milk promoted much more biofilm development, whereas sugar free almond milk promoted a little. When pH test was performed, sugar free almond milk had the lowest cation exchange capacity, whereas bovine milk had the maximum cation exchange capacity.


Author(s):  
Kanchan Vaswani ◽  
Hassendrini Peiris ◽  
Yong Qin Koh ◽  
Rebecca J. Hill ◽  
Tracy Harb ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3310
Author(s):  
Ole Bæk ◽  
Karina Skadborg ◽  
Tik Muk ◽  
Charlotte Amdi ◽  
Peter Heegaard ◽  
...  

Infant formulas offer an alternative to breast milk for both normal birth weight (NBW) and immunocompromised intrauterine growth restricted (IUGR) infants. Although the lipid fraction in formulas is often derived from vegetable oils, it is unclear if this alters immunological outcomes relative to milk fats or whether these effects differ between IUGR and NBW infants. We hypothesized that replacing vegetable oil with bovine milk fat in infant formula would improve immune development in IUGR and NBW neonates. Two-day old piglets were selected (NBW, n = 18, IUGR, n = 18) and each group of animals were fed formula based on either vegetable oil (VEG) or bovine milk fat (MILK). Animals were reared until day 23/24 and systemic immune parameters were evaluated. Milk-fat feeding decreased blood neutrophil counts and improved neutrophil function while transiently reducing leucocytes’ expression of genes related to adaptive and innate immunity as well as energy metabolism, following in vitro stimulation by live Staphylococcus epidermidis (whole blood, 2 h). However, there were only a few interactions between milk-fat type and birthweight status. Thus, piglets fed milk-fat-based formula had improved neutrophil maturation and suppressed pro-inflammatory responses, compared to those fed vegetable-oil-based formula.


Author(s):  
Paola Cremonesi ◽  
Marco Severgnini ◽  
Alicia Romanò ◽  
Lorenza Sala ◽  
Mario Luini ◽  
...  

The advance of high-throughput technologies has increased our knowledge of the world of microorganisms, especially of microbial populations inhabiting living animals. This study provides evidence that milk, as other complex sources, could be critical for generating high-quality DNA for microbiota analysis.


Author(s):  
Jingjing Qian ◽  
Lin Zheng ◽  
Guowan Su ◽  
Mingtao Huang ◽  
Donghui Luo ◽  
...  

2021 ◽  
pp. 105212
Author(s):  
Maria S. Hansen ◽  
Sandra B. Gregersen ◽  
Jan T. Rasmussen

2021 ◽  
pp. 105208
Author(s):  
Marika Bielecka ◽  
Grażyna Cichosz ◽  
Hanna Czeczot

2021 ◽  
pp. 1-10
Author(s):  
H. Thukral ◽  
P. Dhaka ◽  
J. Singh Bedi ◽  
R. Singh Aulakh

Aflatoxin M1 (AFM1) contamination in milk and milk products may pose a major public health concern. The present cross-sectional study was aimed to estimate the prevalence of AFM1 in bovine milk across all districts of Punjab, India and to identify the associated animal and farm level risk factors. A total of 402 milk samples (266 cow milk and 136 buffalo milk) were analysed using commercial ELISA and representative samples were confirmed using HPLC-FLD. The results revealed that 56.2 and 13.4% of the milk samples exceeded the maximum levels of the European Union, i.e. 0.05 μg/l and Food Safety and Standards Authority of India (FSSAI), i.e. 0.5 μg/l for AFM1 in milk, respectively. On analysis of species variation, buffalo milk (prevalence: 56.6%; mean concentration: 0.42±0.9 μg/l) was found to have higher AFM1 levels than cow milk (prevalence: 56.0%; mean concentration: 0.19±0.3 μg/l), with statistically significant difference between mean concentrations (P<0.01) and non-significant difference between AFM1 prevalence (P=0.91). Furthermore, milk from commercial dairy farms (prevalence: 64.7%; mean concentration: 0.34±0.65 μg/l) was found to be more contaminated than from household dairy establishments (prevalence: 47.8%; mean concentration: 0.19±0.65 μg/l). The risk factors ‘above average milk yield/day’ (odds ratio (OR): 2.4) and ‘poor animal hygiene’ (OR: 1.9) were identified at animal level, and ‘intensive dairy farming’ (OR: 3.1) and ‘animal feed without aflatoxin binder’ (OR: 4.7) as farm level risk factors for AFM1 excretion above maximum levels of European Union in milk. Among cow breeds, the milk from ‘non-descript’ breed (OR: 11.5) was found to be most contaminated with AFM1 and the least from Jersey breed (OR: 1.0). The present study highlighted the presence of AFM1 in milk samples; therefore, regular monitoring of AFM1 in milk is required so that high risk regions and associated risk factors can be addressed appropriately.


Sign in / Sign up

Export Citation Format

Share Document