scholarly journals CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets

2020 ◽  
Vol 25 (6) ◽  
pp. 552-567
Author(s):  
Davide Rubbini ◽  
Carles Cornet ◽  
Javier Terriente ◽  
Vincenzo Di Donato

Bringing a new drug to the market costs an average of US$2.6 billion and takes more than 10 years from discovery to regulatory approval. Despite the need to reduce cost and time to increase productivity, pharma companies tend to crowd their efforts in the same indications and drug targets. This results in the commercialization of drugs that share the same mechanism of action (MoA) and, in many cases, equivalent efficacies among them—an outcome that helps neither patients nor the balance sheet of the companies trying to bring therapeutics to the same patient population. Indeed, the discovery of new therapeutic targets, based on a deeper understanding of the disease biology, would likely provide more innovative MoAs and potentially greater drug efficacies. It would also bring better chances for identifying appropriate treatments according to the patient’s genetic stratification. Nowadays, we count with an enormous amount of unprocessed information on potential disease targets that could be extracted from omics data obtained from patient samples. In addition, hundreds of pharmacological and genetic screenings have been performed to identify innovative drug targets. Traditionally, rodents have been the animal models of choice to perform functional genomic studies. The high experimental cost, combined with the low throughput provided by those models, however, is a bottleneck for discovering and validating novel genetic disease associations. To overcome these limitations, we propose that zebrafish, in conjunction with the use of CRISPR/Cas9 genome-editing tools, could streamline functional genomic processes to bring biologically relevant knowledge on innovative disease targets in a shorter time frame.

2020 ◽  
Vol 13 (2) ◽  
pp. 85-93
Author(s):  
Kinjal Gangar ◽  
Lokesh Kumar Bhatt

One of the most common neurological disorders, which occurs among 1% of the population worldwide, is epilepsy. Therapeutic failure is common with epilepsy and nearly about 30% of patients fall in this category. Seizure suppression should not be the only goal while treating epilepsy but associated comorbidities, which can further worsen the condition, should also be considered. Treatment of such comorbidities such as depression, anxiety, cognition, attention deficit hyperactivity disorder and, various other disorders which co-exist with epilepsy or are caused due to epilepsy should also be treated. Novel targets or the existing targets are needed to be explored for the dual mechanism which can suppress both the disease and the comorbidity. New therapeutic targets such as IDO, nNOS, PAR1, NF-κb are being explored for their role in epilepsy and various comorbidities. This review explores recent therapeutic targets for the treatment of comorbidities associated with epilepsy.


Author(s):  
Mingjie Lyu ◽  
Huafeng Liu ◽  
Joram Kiriga Waititu ◽  
Ying Sun ◽  
Huan Wang ◽  
...  

Author(s):  
Wilson Lim ◽  
Florianne Parel ◽  
Sybren de Hoog ◽  
Annelies Verbon ◽  
Wendy W J van de Sande

Abstract Background Eumycetoma is a fungal infection characterised by the formation of black grains by causative agents. The melanin biosynthetic pathways used by the most common causative agents of black-grain mycetoma are unknown and unravelling them could identify potential new therapeutic targets. Method Melanin biosynthetic pathways in the causative fungi were identified by the use of specific melanin inhibitors. Results In Trematosphaeria grisea and Falciformispora tompkinsii, 1,8-dihydroxynaphthalene (DHN)-melanin synthesis was inhibited, while DHN-, 3,4-dihydroxyphenylalanine (DOPA)- and pyo-melanin were inhibited in Medicopsis romeroi and Falciformispora senegalensis. Conclusion Our data suggest that Me. romeroi and F. senegalensis synthesise DHN-, DOPA- and pyo-melanin, while T. grisea and F. tompkinsii only synthesise DHN-melanin.


Sign in / Sign up

Export Citation Format

Share Document