U-Net Deep-Learning-Based 3D Cell Counter for the Quality Control of 3D Cell-Based Assays through Seed Cell Measurement

Author(s):  
Eun Ji Jeong ◽  
Donghyuk Choi ◽  
Dong Woo Lee

Conventional cell-counting software uses contour or watershed segmentations and focuses on identifying two-dimensional (2D) cells attached on the bottom of plastic plates. Recently developed software has been useful tools for the quality control of 2D cell-based assays by measuring initial seed cell numbers. These algorithms do not, however, quantitatively test in three-dimensional (3D) cell-based assays using extracellular matrix (ECM), because cells are aggregated and overlapped in the 3D structure of the ECM such as Matrigel, collagen, and alginate. Such overlapped and aggregated cells make it difficult to segment cells and to count the number of cells accurately. It is important, however, to determine the number of cells to standardize experiments and ensure the reproducibility of 3D cell-based assays. In this study, we apply a 3D cell-counting method using U-net deep learning to high-density aggregated cells in ECM to identify initial seed cell numbers. The proposed method showed a 10% counting error in high-density aggregated cells, while the contour and watershed segmentations showed 30% and 40% counting errors, respectively. Thus, the proposed method can reduce the seed cell-counting error in 3D cell-based assays by providing the exact number of cells to researchers, thereby enabling the acquisition of quality control in 3D cell-based assays.

Author(s):  
Antonella D. Pontoriero ◽  
Giovanna Nordio ◽  
Rubaida Easmin ◽  
Alessio Giacomel ◽  
Barbara Santangelo ◽  
...  

Author(s):  
Thanh Tran ◽  
Lam Binh Minh ◽  
Suk-Hwan Lee ◽  
Ki-Ryong Kwon

Clinically, knowing the number of red blood cells (RBCs) and white blood cells (WBCs) helps doctors to make the better decision on accurate diagnosis of numerous diseases. The manual cell counting is a very time-consuming and expensive process, and it depends on the experience of specialists. Therefore, a completely automatic method supporting cell counting is a viable solution for clinical laboratories. This paper proposes a novel blood cell counting procedure to address this challenge. The proposed method adopts SegNet - a deep learning semantic segmentation to simultaneously segment RBCs and WBCs. The global accuracy of the segmentation of WBCs, RBCs, and the background of peripheral blood smear images obtains 89% when segment WBCs and RBCs from the background of blood smear images. Moreover, an effective solution to separate grouped or overlapping cells and cell count is presented using Euclidean distance transform, local maxima, and connected component labeling. The counting result of the proposed procedure achieves an accuracy of 93.3% for red blood cell count using dataset 1 and 97.38% for white blood cell count using dataset 2.


Author(s):  
Chih-Ping Wang ◽  
Xueyi Wang ◽  
Terry Z. Liu ◽  
Yu Lin

Mesoscale (on the scales of a few minutes and a few RE) magnetosheath and magnetopause perturbations driven by foreshock transients have been observed in the flank magnetotail. In this paper, we present the 3D global hybrid simulation results to show qualitatively the 3D structure of the flank magnetopause distortion caused by foreshock transients and its impacts on the tail magnetosphere and the ionosphere. Foreshock transient perturbations consist of a low-density core and high-density edge(s), thus, after they propagate into the magnetosheath, they result in magnetosheath pressure perturbations that distort magnetopause. The magnetopause is distorted locally outward (inward) in response to the dip (peak) of the magnetosheath pressure perturbations. As the magnetosheath perturbations propagate tailward, they continue to distort the flank magnetopause. This qualitative explains the transient appearance of the magnetosphere observed in the flank magnetosheath associated with foreshock transients. The 3D structure of the magnetosheath perturbations and the shape of the distorted magnetopause keep evolving as they propagate tailward. The transient distortion of the magnetopause generates compressional magnetic field perturbations within the magnetosphere. The magnetopause distortion also alters currents around the magnetopause, generating field-aligned currents (FACs) flowing in and out of the ionosphere. As the magnetopause distortion propagates tailward, it results in localized enhancements of FACs in the ionosphere that propagate anti-sunward. This qualitatively explains the observed anti-sunward propagation of the ground magnetic field perturbations associated with foreshock transients.


Sign in / Sign up

Export Citation Format

Share Document