scholarly journals Investigation of the Effect of Initial Graft Tension During Anterior Talofibular Ligament Reconstruction on Ankle Kinematics, Laxity, and In-situ Force

2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0041
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tomoaki Kamiya ◽  
Kota Watanabe ◽  
Toshihiko Yamashita

Category: Basic Sciences/Biologics Introduction/Purpose: Ankle sprains are the most common sports injuries, and anterior talofibular ligament (ATFL) injury comprised 85% of all ankle sprains. Most patients recover with conservative treatment, but 20% of them progress to chronic ankle instability. Some studies have reported that anatomic reconstruction using a tendon graft is one of the best procedures to restore the ankle to its condition before symptom development. However, the effect of initial graft tension during ATFL reconstruction is still unclear. Therefore, the objective of this study was to investigate the effect of the initial graft tension during ATFL reconstruction. Methods: Eight fresh-frozen cadaveric ankle specimens were subjected to passive plantarflexion (PF)-dorsiflexion (DF) movement from 15° DF to 30° PF using the 6-degree-freedom robotic system. In addition, 60 N of anterior-posterior load, 1.7 Nm of inversion-eversion (IV-EV) torque, and 1.7 Nm of internal-external rotation (IR-ER) torque were applied to the ankle. During testing, 3-dimensional paths of the ankle were recorded simultaneously. Furthermore, in-situ forces of the ATFL and reconstructed graft were calculated using the principle of superposition. A repeated experiment was designed with the intact condition (intact), ATFL transection, and ATFL reconstruction with four different initial graft tensions (10 N, 30 N, 50 N, and 70 N). Results: AP laxity, IV-EV laxity and IR-ER laxity with ATFL transection was significantly greater than those with intact. In ATFL transection, the talus was significantly translated anteriorly with inversion and internal rotations under passive PF-DF motion compared with intact. Kinematic patterns and laxity in ATFL reconstruction with initial tension of 10 N and 30 N almost imitated intact, but in ATFL reconstruction with initial tension 70 N, the talus was significantly translated with external rotation compared with intact. As the initial graft tension during ATFL reconstruction increased, in-situ force of the reconstructed graft tended to increase during PF-DF motion. In-situ force of the reconstructed graft tension was significantly greater with initial tensions of 50 N, and 70 N than with intact during PF-DF motion (Figure 1). Conclusion: ATFL deficiency altered ankle kinematics and laxity. Although the optimal initial graft tension during ATFL reconstruction might restore ankle kinematics and laxity, excessive initial graft tension caused abnormal kinematics and laxity. Furthermore, the reconstructed graft tension increased as the initial tension increased. Initial tension during ATFL reconstruction has the important effect of imitating the normal ankle condition. We suggest that over-tensioning during ATFL reconstruction should be avoided in order to imitate the conditions of a normal ankle.

2020 ◽  
Vol 48 (4) ◽  
pp. 916-922
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tetsuya Takagi ◽  
Satoshi Yamakawa ◽  
Hiroaki Shoji ◽  
...  

Background: Although a variety of surgical procedures for anterior talofibular ligament (ATFL) reconstruction have been reported, the effect of initial graft tension during ATFL reconstruction remains unclear. Purpose/Hypothesis: This study investigated the effects of initial graft tension on ATFL reconstruction. We hypothesized that a high degree of initial graft tension would cause abnormal kinematics and laxity. Study Design: Controlled laboratory study. Methods: Twelve cadaveric ankles were tested with a robotic system with 6 degrees of freedom to apply passive plantarflexion and dorsiflexion motions and a multidirectional load. A repeated measures experiment was designed with the intact ATFL, transected ATFL, and reconstructed ATFL at initial tension conditions of 10, 30, 50, and 70 N. The 3-dimensional path and reconstructed graft tension were simultaneously recorded, and the in situ forces of the ATFL and reconstructed graft were calculated with the principle of superposition. Results: Initial tension of 10 N was sufficient to imitate normal ankle kinematics and laxity, which were not significantly different when compared with those of the intact ankles. The in situ force on the reconstructed graft tended to increase as the initial tension increased. In situ force on the reconstructed graft >30 N was significantly greater than that of intact ankles. The in situ force on the ATFL was 19 N at 30° of plantarflexion. In situ forces of 21.9, 30.4, 38.2, and 46.8 N were observed at initial tensions of 10, 30, 50, and 70 N, respectively, at 30° of plantarflexion. Conclusion: Approximate ankle kinematic patterns and sufficient laxity, even with an initial tension of 10 N, could be obtained immediately after ATFL reconstruction. Moreover, excessive initial graft tension during ATFL reconstruction caused excessive in situ force on the reconstructed graft. Clinical Relevance: This study revealed the effects of initial graft tension during ATFL reconstruction. These data suggest that excessive tension during ATFL reconstruction should be avoided to ensure restoration of normal ankle motion.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0006
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Hiroaki Shoji ◽  
Tonmoaki Kamiya ◽  
Kota Watanabe ◽  
...  

Category: Ankle, Basic Sciences/Biologics Introduction/Purpose: Anatomical anterior talofibular ligament (ATFL) reconstruction is a standard surgical treatment for chronic lateral ankle instability. The optimal position during ATFL reconstruction is still uncertain. The purpose of this study was to investigate the effect of ankle position during ATFL reconstruction on ankle kinematics, laxity, and in-situ force on the graft. Methods: Twelve fresh-frozen cadaveric ankles were evaluated. First, ankle specimens were subjected to passive plantarflexion (PF)-dorsiflexion (DF) movement, from 15° DF to 30° PF, using a 6-degrees-of-freedom robotic system. Then, 60 N of anterior- posterior (AP) load, 1.7 Nm of inversion-eversion (IV-EV) torque, and 1.7 Nm of internal-external rotation (IR-ER) torque were applied to the ankle. During testing, 3-dimensional paths of the ankle were recorded simultaneously. In-situ forces on the ATFL and reconstructed graft were calculated using the principle of superposition. A repeat experiment was designed with intact (intact), ATFL transection, and ATFL reconstruction conditions, using 3 different flexion angles (Group A: 0°, Group B: PF 15°, Group C: PF 30°). Results: In ATFL transection condition, the talus was significantly translated anteriorly with internal rotation during PF-DF motion, compared to that in intact condition. In addition, laxity in AP, IV-EV, and IR-ER conditions was significantly greater than in intact condition. In each ATFL reconstruction group, kinematics and laxity showed no significant difference compared to that in intact condition. In intact condition, in-situ force was maximal at PF 30° (19.0±12.0 N). The in-situ force on the reconstructed graft in Group A, B, and C at PF 30° was 50.0±12.4 N, 33.7±13.0 N, and 21.9±7.5 N. The in-situ force in Group A and B was significantly greater than in intact condition. The in-situ force in Group C was not significantly different compared to that in intact condition (Figure 1). Conclusion: Ankle position during ATFL reconstruction affected in-situ force on the reconstructed graft. ATFL reconstruction at PF 30° is recommended to avoid excessive in-situ force on the reconstructed graft.


2022 ◽  
pp. 107110072110693
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tetsuya Takagi ◽  
Satoshi Yamakawa ◽  
Hiroaki Shoji ◽  
...  

Background: This study aimed to evaluate the effects of the ankle flexion angle during anterior talofibular ligament (ATFL) reconstruction on ankle kinematics, laxity, and in situ force of a graft. Methods: Twelve cadaveric ankles were evaluated using a 6–degrees of freedom robotic system to apply passive plantar flexion and dorsiflexion motions and multidirectional loads. A repeated measures experiment was designed using the intact ATFL, transected ATFL, and reconstructed ATFL. During ATFL reconstruction (ATFLR), the graft was fixed at a neutral position (ATFLR 0 degrees), 15 degrees of plantar flexion (ATFLR PF15 degrees), and 30 degrees of plantar flexion (ATFLR PF30 degrees) with a constant initial tension of 10 N. The 3-dimensional path and reconstructed graft tension were simultaneously recorded, and the in situ force of the ATFL and reconstructed grafts were calculated using the principle of superposition. Results: The in situ forces of the reconstructed grafts in ATFLR 0 degrees and ATFLR PF 15 degrees were significantly higher than those of intact ankles. The ankle kinematics and laxity produced by ATFLR PF 30 degrees were not significantly different from those of intact ankles. The in situ force on the ATFL was 19.0 N at 30 degrees of plantar flexion. In situ forces of 41.0, 33.7, and 21.9 N were observed at 30 degrees of plantar flexion in ATFLR 0, 15, and 30 degrees, respectively. Conclusion: ATFL reconstruction with the peroneus longus (PL) tendon was performed with the graft at 30 degrees of plantar flexion resulted in ankle kinematics, laxity, and in situ forces similar to those of intact ankles. ATFL reconstructions performed with the graft fixed at 0 and 15 degrees of the plantar flexion resulted in higher in situ forces on the reconstructed graft. Clinical Relevance: Fixing the ATFL tendon graft at 30 degrees of plantar flexion results in an in situ force closest to that of an intact ankle and avoids the excessive tension on the reconstructed graft.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Bardiya Akhbari ◽  
Matthew H. Dickinson ◽  
Ednah G. Louie ◽  
Sami Shalhoub ◽  
Lorin P. Maletsky

Ankle sprains are a common injury that may need reconstruction and extensive physical therapy. The purpose of this study was to provide a description of the biomechanics of the ankle joint complex (AJC) after anterior talofibular (ATFL) and calcaneofibular (CFL) ligament rupture to better understand severe ankle injuries. The envelope of motion of ten cadaveric ankles was examined by manual manipulations that served as training data for a radial basis function used to interpolate ankle mobility at flexion angles under load and torque combinations. Moreover, ankle kinematics were examined, while tendons were loaded to identify how their performance is altered by ligament rupture. The increased force required to plantarflex the ankle following ligament rupture was measured by calculating the load through the Achilles. Following ATFL injury, the largest changes were internal rotation (5 deg) in deep plantarflexion and anterior translation (1.5 mm) in early plantarflexion. The combined ATFL and CFL rupture changed the internal/external rotation (3 deg), anterior/posterior translation (1 mm), and inversion (5 deg) throughout flexion relative to the isolated ATFL rupture. Moreover, the Achilles' load increased by 24% after the rupture of ligaments indicating a reduction in its efficiency. This study suggests that if patients demonstrate primarily an increased laxity in internal rotation, the damage has solely occurred to the ATFL; however, if the constraint is reduced across multiple motions, there is likely damage to both ligaments. Higher loads in the Achilles suggest that it is overloaded after the injury; hence, targeting the calf muscles in rehabilitation exercises may reduce patients' pain.


2018 ◽  
Vol 46 (12) ◽  
pp. 2935-2941 ◽  
Author(s):  
Yuzuru Sakakibara ◽  
Atsushi Teramoto ◽  
Tetsuya Takagi ◽  
Satoshi Yamakawa ◽  
Yohei Okada ◽  
...  

Background: Although a variety of surgical procedures for lateral ankle ligament reconstruction have frequently been reported, little is known about the effects of initial graft tension. Purpose/Hypothesis: The purpose was to investigate the effects of initial graft tension in calcaneofibular ligament (CFL) reconstruction. It was hypothesized that a high degree of initial graft tension would cause abnormal kinematics, laxity, and excessive graft tension. Study Design: Controlled laboratory study. Methods: Twelve cadaveric ankles were tested with a 6 degrees of freedom robotic system to apply passive plantarflexion-dorsiflexion motion and multidirectional loads. A repeated-measures experiment was designed with the CFL intact, CFL transected, and CFL reconstructed with 4 initial tension conditions (10, 30, 50, and 70 N). The 3-dimensional path and reconstructed graft tension were simultaneously recorded. Results: The calcaneus in CFL reconstruction with an initial tension of 70 N had the most eversion relative to the intact condition (mean eversion translations of 1.2, 3.0, 5.0, and 6.2 mm were observed at initial tensions of 10, 30, 50, and 70 N, respectively). The calcaneus also moved more posteriorly with external rotation as the initial tension increased. The reconstructed graft tension tended to increase as the initial tension increased. Conclusion: Ankle kinematic patterns and laxity after CFL reconstruction tended to become more abnormal as the initial graft tension increased at the time of surgery. Moreover, excessive initial graft tension caused excessive tension on the reconstructed graft. Clinical Relevance: This study indicated the importance of initial graft tension during CFL reconstruction. Overtensioning during CFL reconstruction should be avoided to imitate a normal ankle.


2002 ◽  
Vol 30 (5) ◽  
pp. 660-666 ◽  
Author(s):  
Masayoshi Yagi ◽  
Eric K. Wong ◽  
Akihiro Kanamori ◽  
Richard E. Debski ◽  
Freddie H. Fu ◽  
...  

Background: The focus of most anterior cruciate ligament reconstructions has been on replacing the anteromedial bundle and not the posterolateral bundle. Hypothesis: Anatomic two-bundle reconstruction restores knee kinematics more closely to normal than does single-bundle reconstruction. Study Design: Controlled laboratory study. Methods: Ten cadaveric knees were subjected to external loading conditions: 1) a 134-N anterior tibial load and 2) a combined rotatory load of 5-N·m internal tibial torque and 10-N·m valgus torque. Resulting knee kinematics and in situ force in the anterior cruciate ligament or replacement graft were determined by using a robotic/universal force-moment sensor testing system for 1) intact, 2) anterior cruciate ligament deficient, 3) single-bundle reconstructed, and 4) anatomically reconstructed knees. Results: Anterior tibial translation for the anatomic reconstruction was significantly closer to that of the intact knee than was the single-bundle reconstruction. The in situ force normalized to the intact anterior cruciate ligament for the anatomic reconstruction was 97% ± 9%, whereas the single-bundle reconstruction was only 89% ± 13%. With a combined rotatory load, the normalized in situ force for the single-bundle and anatomic reconstructions at 30° of flexion was 66% ± 40% and 91% ± 35%, respectively. Conclusions: Anatomic reconstruction may produce a better biomechanical outcome, especially during rotatory loads. Clinical Relevance: Results may lead to the use of a two-bundle technique.


2007 ◽  
Vol 35 (9) ◽  
pp. 1521-1527 ◽  
Author(s):  
Benjamin R. Coobs ◽  
Robert F. LaPrade ◽  
Chad J. Griffith ◽  
Bradley J. Nelson

Background The fibular collateral ligament is the primary stabilizer to varus instability of the knee. Untreated fibular collateral ligament injuries can lead to residual knee instability and can increase the risk of concurrent cruciate ligament reconstruction graft failures. Anatomic reconstructions of the fibular collateral ligament have not been biomechanically validated. Purpose To describe an anatomic fibular collateral ligament reconstruction using an autogenous semitendinosus graft and to test the hypothesis that using this reconstruction technique to treat an isolated fibular collateral ligament injury will restore the knee to near normal stability. Study Design Controlled laboratory study. Methods Ten nonpaired, fresh-frozen cadaveric knees were biomechanically subjected to a 10 N·m varus moment and 5 N·m external and internal rotation torques at 0°, 15°, 30°, 60°, and 90° of knee flexion. Testing was performed with an intact and sectioned fibular collateral ligament, and also after an anatomic reconstruction of the fibular collateral ligament with an autogenous semitendinosus graft. Motion changes were assessed with a 6 degree of freedom electromagnetic motion analysis system. Results After sectioning, we found significant increases in varus rotation at 0°, 15°, 30°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0°, 15°, 30°, 60°, and 90° of knee flexion. After reconstruction, there were significant decreases in motion in varus rotation at 0°, 15°, 30°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0°, 15°, and 30° of knee flexion. In addition, we observed a full recovery of knee stability in varus rotation at 0°, 60°, and 90°, external rotation at 60° and 90°, and internal rotation at 0° and 30° of knee flexion. Conclusion An anatomic fibular collateral ligament reconstruction restores varus, external, and internal rotation to near normal stability in a knee with an isolated fibular collateral ligament injury. Clinical Significance An anatomic reconstruction of the fibular collateral ligament with an autogenous semitendinosus graft is a viable option to treat nonrepairable acute or chronic fibular collateral ligament tears in patients with varus instability.


Author(s):  
Rebecca H East ◽  
Jonathan J Noble ◽  
Richard A Arscott ◽  
Adam P Shortland

1998 ◽  
Vol 26 (2) ◽  
pp. 271-277 ◽  
Author(s):  
Douglas P. Kirkpatrick ◽  
Robert E. Hunter ◽  
Peter C. Janes ◽  
Jackie Mastrangelo ◽  
Richard A. Nicholas

We undertook a prospective study to determine the type and distribution of foot and ankle snowboarding injuries. Reports of 3213 snowboarding injuries were collected from 12 Colorado ski resorts between 1988 and 1995. Of these, 491 (15.3%) were ankle injuries and 58 (1.8%) were foot injuries. Ankle injuries included 216 (44%) fractures and 255 (52%) sprains. Thirty-three (57%) of the foot injuries were fractures and 16 (28%) were sprains. The remaining injuries were soft tissue injuries, contusions, or abrasions. There was no significant correlation between boot type (soft, hybrid, or hard) and overall foot or ankle injury rate. There were significantly fewer ankle sprains in patients wearing hybrid boots and fewer fractures of the lateral process of the talus in patients wearing soft boots. An unexpectedly high number of fractures of the lateral process of the talus were noted. These 74 fractures represented 2.3% of all snowboarding injuries, 15% of all ankle injuries, and 34% of the ankle fractures. Many of these fractures are not visible on plain radiographs and require computed tomography imaging to be diagnosed. Diagnosis of this fracture pattern is paramount; the physician should be very suspicious of anterolateral ankle pain in the snowboarder, where subtle fractures that may require surgical intervention can be confused with anterior talofibular ligament sprains.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0029
Author(s):  
Nicola Krähenbühl ◽  
Travis Bailey ◽  
Nathan Davidson ◽  
Heath Henninger ◽  
Charles Saltzman ◽  
...  

Category: Sports Introduction/Purpose: Between 1-18% of all ankle sprains and 23% of all ankle fractures involve injury to the distal tibio-fibular syndesmosis. Syndesmotic injuries can create a substantial diagnostic and therapeutic challenge for orthopaedic surgeons. While acute injuries can be assessed using conventional radiographs, subtle syndesmotic injuries may be misdiagnosed using X-rays. Misdiagnoses may result in chronic ankle instability, pain and post-traumatic osteoarthritis of the tibio-talar joint. The purpose of this study was to investigate whether syndesmotic injury was more easily diagnosed with stress vs. non-stress radiographs.radiographs.sed with stress vs. non-stress radiographs. Methods: Five pairs of cadavers (tibia plateau to toe-tip, mean 61 years, range 52-70 years) were scanned with weight-bearing CT (170 lb, w/ and w/o 10 Nm static external rotation torque). Digitally reconstructed radiographs (DRRs), which are comparable to conventional radiographs, were reconstructed from the 3D CT data. The following conditions were tested: First, intact ankles (Native) were tested. Second, one specimen from each pair underwent AITFL resection, while the contralateral underwent deltoid resection (Condition 1). Third, the remaining intact deltoid ligament or AITFL was resected in each ankle (Condition 2). Finally, the interosseous membrane (IOM) was resected in all ankles (Condition 3). Condition 3 was defined as acute syndesmotic injury. Using antero-posterior (AP) views, the tibio-fibular clear space (TFCS), tibiofibular overlap (TFO) and medial clear space (MCS) were assessed. Statistical analysis was performed using paired (comparison within groups) and unpaired (comparison between groups) t-test where p=0.05 was considered significant. Results: Regarding the TFCS, Native vs. Condition 3 in 10 Nm stress radiographs was significantly different in the deltoid group (p=0.021). Using TFO in stress and non-stressed radiographs, Native vs. Condition 2 and 3 was significantly different for the deltoid group (p=0.043), and Native vs. Condition 3 in the syndesmotic group (p=0.027). Regarding the MCS in non-stress radiographs, Native vs. Condition 3 was significantly different in the deltoid group (p=0.007), while in stress views, Native vs. Condition 2 was significant different in the syndesmotic (p=0.026) and Native vs. Condition 3 in the deltoid group (p=0.030). No differences were found comparing the conditions of the AITFL with the same conditions of the deltoid group. Conclusion: The TFCS cannot be used to assess subtle or acute syndesmotic injuries in stress and non-stress radiographs. The TFO can be used to assess a combined injury to the AITFL and deltoid ligament in stress and non-stress radiographs. The MCS can be used to assess acute syndesmotic injuries in stress and non-stress radiographs. Radiographs (stress or non-stress) cannot be used to distinguish between injuries to the AITFL or deltoid ligament. Therefore, stress and non-stress radiographs are not useful in assessment of subtle syndesmotic injuries. Stress-radiographs are not superior compared to non-stress radiographs in assessment of acute syndesmotic injuries.


Sign in / Sign up

Export Citation Format

Share Document