scholarly journals Immunocytochemical localization of cathepsin B in rat kidney. I. Light microscopic study using the indirect immunoenzyme technique.

1986 ◽  
Vol 34 (7) ◽  
pp. 891-897 ◽  
Author(s):  
S Yokota ◽  
H Tsuji ◽  
K Kato

Localization of cathepsin B in rat kidney was studied using immunocytochemical techniques. Cathepsin B was purified from rat liver and antibody to it was raised in rabbits. The antibody reacted with a lysosomal extract of rat kidney to form a single precipitin line in a double-diffusion test. Immunoblot analysis of lysosomal cathepsin B of rat kidney showed two species of 29K and 25K MW. After removal of Epon, semi-thin sections of glutaraldehyde-fixed tissue were stained by the indirect immunoenzyme technique. Dark-brown reaction product, indicating the antigenic sites for cathepsin B, was found in cytoplasmic granules throughout the nephron. Staining intensity and size of the positive granules varied widely in each segment of the nephron. In the glomeruli and distal tubules, a few small cytoplasmic granules were stained. In the proximal tubules, the S1 segment exhibited many large granules which were most heavily stained, whereas the S2 and S3 segments contained few positive granules. All segments of the distal tubules showed the smallest amount of positive granules. A few positive granules were also noted in the cortical and medullary collecting tubules. Control experiments confirmed the specificity of the staining. The results indicate that the major site for cathepsin B in rat kidney is the S1 segment of the proximal tubule which is known to actively take up proteins leaked through the glomerulus.

1986 ◽  
Vol 34 (7) ◽  
pp. 899-907 ◽  
Author(s):  
S Yokota ◽  
H Tsuji ◽  
K Kato

Thin sections of Lowicryl K4M-embedded materials were labeled with protein A-gold complex. Gold particles representing the antigen sites for cathepsin B were exclusively confined to lysosomes of each segment of the nephron. The heaviest labeling was noted in the lysosomes of the S1 segment of the proximal tubules. Labeling intensity varied considerably with the individual lysosomes. Lysosomes of the other tubular segments, such as the S2 and S3 segments of the proximal tubules, distal convoluted tubules, and collecting tubules were weakly labeled by gold particles. Quantitative analysis of labeling density also confirmed that lysosomes in the S1 segment have the highest labeling density and that approximately 65% of labeling in the whole renal segments, except for the glomerulus, was found in the S1 segment. These results indicate that in rat kidney the lysosomes of the S1 segment are a main location of cathepsin B. Further precise observations on lysosomes of the S1 segment revealed that apical vesicles, tubules, and vacuoles were devoid of gold particles, but when the vacuoles contained fine fibrillar materials, gold labeling was detectable in such vacuoles. As the lysosomal matrix becomes denser, the labeling density is increased. Some small vesicles around the Golgi complex were also labeled. These results indicate that the endocytotic apparatus including the apical vesicles, tubules, and vacuoles contains no cathepsin B. When the vacuoles develop into phagosomes, they acquire this enzyme to digest the absorbed proteins.


1986 ◽  
Vol 34 (12) ◽  
pp. 1709-1718 ◽  
Author(s):  
N Usuda ◽  
S Yokota ◽  
T Hashimoto ◽  
T Nagata

Light and electron microscopic localizations of D-amino acid oxidase (DAO) in rat kidney was investigated using immunoenzyme and protein A-gold techniques. The enzyme was purified from rat kidney homogenate and its antibody was raised in rabbits. By Ouchterlony double-diffusion analysis and immunoblot analysis with anti-(rat kidney DAO) immunoglobulin, the antibody was confirmed to be monospecific. The tissue sections (200 micron thick) of fixed rat kidney were embedded in Epon or Lowicryl K4M. Semi-thin sections were stained for DAO by the immunoenzyme technique after removal of epoxy resin for LM, and ultra-thin sections of Lowicryl-embedded material were labeled for DAO by the protein A-gold technique for EM. By LM, fine cytoplasmic granules of proximal tubule were stained exclusively. Among three segments of proximal tubules, and S2 and S3 segments were heavily stained but the S1 segment only weakly so. By EM, gold particles indicating the antigenic sites for DAO were exclusively confined to peroxisomes. Within peroxisomes, the gold particles were localized in the central clear matrix but not in the peripheral tubular substructures. The results indicate that D-amino acid oxidase in rat kidney is present exclusively in peroxisomes in the proximal tubule and that within peroxisomes it is found only in central clear matrix and not in the peripheral tubular substructures.


1975 ◽  
Vol 66 (3) ◽  
pp. 586-608 ◽  
Author(s):  
S A Ernst

A cytochemical method for the light and electron microscope localization of the K- and Mg-dependent phosphatase component of the Na-K-ATPase complex was applied to rat kidney cortex, utilizing p-nitrophenylphosphate (NPP) as substrate. Localization of K-N-ATPase activity in kidneys fixed by perfusion with 1% paraformaldehyde -0.25% glutaraldehyde demonstrated that distal tubules are the major cortical site for this sodium transport enzyme. Cortical collecting tubules were moderately reactive, whereas activity in proximal tubules was resolved only after short fixation times and long incubations. In all cases, K-NPPase activity was restricted to the cytoplasmic side of the basolateral plasma membranes, which are characterized in these neplron segments by elaborate folding of the cell surface. Although the rat K-NPPase appeared almost completely insensitive to ouabain with this cytochemical medium, parallel studies with the more glycoside-sensitive rabbit kidney indicated that K-NPPase activity in these nephron segments is sensitive to this inhibitor. In addition to K-NPPase, nonspecific alkaline phosphatase also hydrolyzed NPP. The latter could be differentiated cytochemically from the specific phosphatase, since alkaline phosphatase was K-independent, insensitive to ouabain, and specifically inhibited by cysteine. Unlike K-NPPPase, alkaline phosphatase was localized primarily to the extracellular side of the microvillar border of proximal tubules. A small amount of cysteine-sensitive activity was resolved along peritubular surfaces of proximal tubules. Distal tubules were unreactive. In comparative studies, Mg-ATPase activity was localized along the extracellular side of the luminal and basolateral surfaces of proximal and distal tubules and the basolateral membranes of collecting tubules.


1989 ◽  
Vol 37 (11) ◽  
pp. 1689-1697 ◽  
Author(s):  
H Matsuba ◽  
T Watanabe ◽  
M Watanabe ◽  
Y Ishii ◽  
S Waguri ◽  
...  

To examine the correlation of localization of prorenin, renin, and cathepsins B, H, and L, immunocytochemistry was applied to rat renal tissue, using a sequence-specific anti-body (anti-prorenin) that recognizes the COOH terminus of the rat renin prosegment. In serial semi-thin sections, immunodeposits for prorenin, renin, and cathepsins B, H, and L were localized in the same juxtaglomerular (JG) cells. Immunodeposits for renin were detected throughout the cytoplasm of the cells, whereas those for prorenin were detected in the perinuclear region. Immunoreactivity for cathepsin B was stronger than that for cathepsins H and L. By electron microscopy, prorenin was localized in small (immature) granules but not in large mature granules, whereas renin was localized mainly in mature granules. In serial thin sections, prorenin, renin, and cathepsin B were colocalized in the same immature granules containing heterogeneously dense material (intermediate granules). By double immunostaining, co-localization of renin with cathepsins B, H, or L was demonstrated in mature granules. The results suggest the possibility that processing of prorenin to renin occurs in immature granules of rat JG cells, and cathepsin B detected in JG cells may be a major candidate for the maturation of renin.


2014 ◽  
Vol 42 (06) ◽  
pp. 1453-1469 ◽  
Author(s):  
Xiao-Wei Li ◽  
Sadaki Yokota ◽  
Dan Wang ◽  
Xuan Wang ◽  
Yukihiro Shoyama ◽  
...  

Aristolochic acids (AAs) are found in herbal medicines of Aristolochiaceae plants, including Aristolochia and Asarum species. AAs are associated with a rapidly progressive interstitial nephritis, which is called aristolochic acid nephropathy (AAN). However, the in-situ localization of AAs in the target organ, the kidney, has not been investigated yet. In the present study, the accumulation of aristolochic acid I (AA-I) in mouse kidney was revealed by immunoperoxidase light microscopy as well as colloidal gold immunoelectron microscopy (IEM) based on an anti-AA-I and AA-II monoclonal antibody (mAb). Male BALB/c mice were treated with 1.25 or 2.50 mg kg-1 of AA-I per day for 5 days. Paraffin sections and ultra-thin sections of kidney tissue were respectively prepared. Under light microscopy, the apical surface of proximal tubules was strongly stained for AA-I, whereas no obvious immunostaining was found in the distal tubules and glomerulus, which remained relatively intact. Under electron microscopy, epithelial cells of the proximal tubules, distal tubules and collecting tubules were broken to various degrees. Gold labeling in the proximal and distal tubules was stronger than that in the collecting tubules. In renal tubules, immunogold signals of AA-I tended to accumulate in the mitochondria and peroxisomes, though the signals could be observed all over the cell. Gold signals were also found in the erythrocytes of glomeruli. The MAb against AA-I and AA-II provides a clue for the identification of proteins or factors which might interact with AA-I and thus induce targeted damage of kidney.


2002 ◽  
Vol 50 (8) ◽  
pp. 1091-1096 ◽  
Author(s):  
Alberto Ricci ◽  
Sophie Marchal-Victorion ◽  
Elena Bronzetti ◽  
Angelo Parini ◽  
Francesco Amenta ◽  
...  

Dopamine D4 receptors mediate inhibition of vasopressin-dependent sodium reabsorption by dopamine in collecting tubules. At present, the distribution of D4 receptors in other renal districts remains an open issue. The renal distribution of D4 receptor was assessed in normally innervated and denervated male Sprague-Dawley rats by quantitative immunohistochemistry using an anti-dopamine D4 receptor rabbit polyclonal antibody. D4 receptor protein immunoreactivity was observed perivascularly in the adventitia and the adventitia-media border. The density of perivascular dopamine D4 receptor was higher in afferent and efferent arterioles than in other segments of the renal vascular tree. Renal denervation abolished perivascular dopamine D4 receptor protein immunoreactivity. In renal tubules, the epithelium of collecting tubules showed the highest dopamine D4 receptor protein immunoreactivity, followed by the epithelium of proximal and distal tubules. No dopamine D4 receptor protein immunoreactivity was observed in the epithelium of the loop of Henle. Denervation did not change dopamine D4 receptor protein immunoreactivity in renal tubules. These results indicate that rat kidney expresses dopamine D4 receptors located both prejunctionally and nonprejunctionally in collecting, proximal, and distal tubules. This suggests that the dopamine D4 receptor may be involved in the control of neurotransmitter release and in renal hemodynamic and tubule function.


1994 ◽  
Vol 42 (5) ◽  
pp. 621-626 ◽  
Author(s):  
N Ma ◽  
E Aoki ◽  
R Semba

Biochemical studies have revealed considerable amounts of free amino acids in the kidney. We examined the intrarenal distribution of three amino acids (aspartate, glutamate, and taurine) in the rat kidney with an immunoperoxidase method. In the renal cortex, all three amino acids were concentrated in the renal corpuscles and in the epithelia of the collecting tubules. Immunostaining of the collecting tubules was more intense in the principal cells than in the intercalated cells. The distal convoluted tubules were also immunostained with aspartate- and glutamate- specific antibodies but not with the taurine-specific antibody. In the renal medulla, the immunoreactivity specific for aspartate and for glutamate was similar; it was weak in the thick portion of the loop of Henle and strong in the collecting tubules. Immunoreactivity specific for taurine was restricted to regions within the epithelia of the thin portion of the loop of Henle and the collecting tubules. The significance of the accumulated amino acids as osmoregulatory agents is discussed.


1986 ◽  
Vol 136 (3) ◽  
pp. 947-954 ◽  
Author(s):  
Shigeyuki Takeda ◽  
Eiji Kusano ◽  
Naoki Murayama ◽  
Yasushi Asano ◽  
Saichi Hosoda ◽  
...  

1990 ◽  
Vol 111 (3) ◽  
pp. 1255-1263 ◽  
Author(s):  
E Schnabel ◽  
J M Anderson ◽  
M G Farquhar

The foot processes of glomerular epithelial cells of the mammalian kidney are firmly attached to one another by shallow intercellular junctions or slit diaphragms of unknown composition. We have investigated the molecular nature of these junctions using an antibody that recognizes ZO-1, a protein that is specific for the tight junction or zonula occludens. By immunoblotting the affinity purified anti-ZO-1 IgG recognizes a single 225-kD band in kidney cortex and in slit diaphragm-enriched fractions as in other tissues. When ZO-1 was localized by immunofluorescence in kidney tissue of adult rats, the protein was detected in epithelia of all segments of the nephron, but the glomerular epithelium was much more intensely stained than any other epithelium. Among tubule epithelia the signal for ZO-1 correlated with the known fibril content and physiologic tightness of the junctions, i.e., it was highest in distal and collecting tubules and lowest in the proximal tubule. By immunoelectron microscopy ZO-1 was found to be concentrated on the cytoplasmic surface of the tight junctional membrane. Within the glomerulus ZO-1 was localized predominantly in the epithelial foot processes where it was concentrated precisely at the points of insertion of the slit diaphragms into the lateral cell membrane. Its distribution appeared to be continuous along the continuous slit membrane junction. When ZO-1 was localized in differentiating glomeruli in the newborn rat kidney, it was present early in development when the apical junctional complexes between presumptive podocytes are composed of typical tight and adhering junctions. It remained associated with these junctions during the time they migrate down the lateral cell surface, disappear and are replaced by slit diaphragms. The distribution of ZO-1 and the close developmental relationship between the two junctions suggest that the slit diaphragm is a variant of the tight junction that shares with it at least one structural protein and the functional property of defining distinctive plasmalemmal domains. The glomerular epithelium is unique among renal epithelia in that ZO-1 is present, but the intercellular spaces are wide open and no fibrils are seen by freeze fracture. The presence of ZO-1 along slit membranes indicates that expression of ZO-1 alone does not lead to tight junction assembly.


2005 ◽  
Vol 288 (4) ◽  
pp. F694-F702 ◽  
Author(s):  
Ki-Hwan Han ◽  
Jung-Mi Lim ◽  
Wan-Young Kim ◽  
Hyang Kim ◽  
Kirsten M. Madsen ◽  
...  

Endothelium-derived nitric oxide (NO) is synthesized within the developing kidney and may play a crucial role in the regulation of renal hemodynamics. The purpose of this study was to establish the expression and intrarenal localization of the NO-synthesizing enzyme endothelial NO synthase (eNOS) during kidney development. Rat kidneys from 14 ( E14)-, 16 ( E16)-, 18 ( E18)-, and 20-day-old ( E20) fetuses and 1 ( P1)-, 3 ( P3)-, 7 ( P7)-, 14 ( P14)-, and 21-day-old ( P21) pups were processed for immunocytochemical and immunoblot analysis. In fetal kidneys, expression of eNOS was first observed in the endothelial cells of the undifferentiated intrarenal capillary network at E14. At E16, strong eNOS immunoreactivity was observed in the endothelial cells of renal vesicles, S-shaped bodies (stage II glomeruli), and stage III glomeruli at the corticomedullary junction. At E18- 20, early-stage developing glomeruli located in the subcapsular region showed less strong eNOS immunoreactivity than those of E16. The eNOS-positive immature glomeruli were observed in the nephrogenic zone until 7 days after birth. In fetal kidneys, eNOS was also expressed in the medulla in the endothelial cells of the capillaries surrounding medullary collecting ducts. After birth, eNOS immunostaining gradually increased in the developing vascular bundles and peritubular capillaries in the medulla and was highest at P21. Surprisingly, eNOS was also expressed in proximal tubules, in the endocytic vacuolar apparatus, only at P1. The strong expression of eNOS in the early stages of developing glomeruli and vasculature suggests that eNOS may play a role in regulating renal hemodynamics of the immature kidney.


Sign in / Sign up

Export Citation Format

Share Document