Expression of endothelial nitric oxide synthase in developing rat kidney

2005 ◽  
Vol 288 (4) ◽  
pp. F694-F702 ◽  
Author(s):  
Ki-Hwan Han ◽  
Jung-Mi Lim ◽  
Wan-Young Kim ◽  
Hyang Kim ◽  
Kirsten M. Madsen ◽  
...  

Endothelium-derived nitric oxide (NO) is synthesized within the developing kidney and may play a crucial role in the regulation of renal hemodynamics. The purpose of this study was to establish the expression and intrarenal localization of the NO-synthesizing enzyme endothelial NO synthase (eNOS) during kidney development. Rat kidneys from 14 ( E14)-, 16 ( E16)-, 18 ( E18)-, and 20-day-old ( E20) fetuses and 1 ( P1)-, 3 ( P3)-, 7 ( P7)-, 14 ( P14)-, and 21-day-old ( P21) pups were processed for immunocytochemical and immunoblot analysis. In fetal kidneys, expression of eNOS was first observed in the endothelial cells of the undifferentiated intrarenal capillary network at E14. At E16, strong eNOS immunoreactivity was observed in the endothelial cells of renal vesicles, S-shaped bodies (stage II glomeruli), and stage III glomeruli at the corticomedullary junction. At E18- 20, early-stage developing glomeruli located in the subcapsular region showed less strong eNOS immunoreactivity than those of E16. The eNOS-positive immature glomeruli were observed in the nephrogenic zone until 7 days after birth. In fetal kidneys, eNOS was also expressed in the medulla in the endothelial cells of the capillaries surrounding medullary collecting ducts. After birth, eNOS immunostaining gradually increased in the developing vascular bundles and peritubular capillaries in the medulla and was highest at P21. Surprisingly, eNOS was also expressed in proximal tubules, in the endocytic vacuolar apparatus, only at P1. The strong expression of eNOS in the early stages of developing glomeruli and vasculature suggests that eNOS may play a role in regulating renal hemodynamics of the immature kidney.

2002 ◽  
Vol 22 (24) ◽  
pp. 8467-8477 ◽  
Author(s):  
Xiu-Fen Ming ◽  
Hema Viswambharan ◽  
Christine Barandier ◽  
Jean Ruffieux ◽  
Kozo Kaibuchi ◽  
...  

ABSTRACT Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.


2000 ◽  
Vol 279 (4) ◽  
pp. F671-F678 ◽  
Author(s):  
Xiaohui Zhang ◽  
Hong Li ◽  
Haoli Jin ◽  
Zachary Ebin ◽  
Sergey Brodsky ◽  
...  

Hyperhomocysteinemia (HHCy) is an independent and graded cardiovascular risk factor. HHCy is prevalent in patients with chronic renal failure, contributing to the increased mortality rate. Controversy exists as to the effects of HHCy on nitric oxide (NO) production: it has been shown that HHCy both increases and suppresses it. We addressed this problem by using amperometric electrochemical NO detection with a porphyrinic microelectrode to study responses of endothelial cells incubated with homocysteine (Hcy) to the stimulation with bradykinin, calcium ionophore, or l-arginine. Twenty-four-hour preincubation with Hcy (10, 20, and 50 μM) resulted in a gradual decline in responsiveness of endothelial cells to the above stimuli. Hcy did not affect the expression of endothelial nitric oxide synthase (eNOS), but it stimulated formation of superoxide anions, as judged by fluorescence of dichlorofluorescein, and peroxynitrite, as detected by using immunoprecipitation and immunoblotting of proteins modified by tyrosine nitration. Hcy did not directly affect the ability of recombinant eNOS to generate NO, but oxidation of sulfhydryl groups in eNOS reduced its NO-generating activity. Addition of 5-methyltetrahydrofolate restored NO responses to all agonists tested but affected neither the expression of the enzyme nor formation of nitrotyrosine-modified proteins. In addition, a scavenger of peroxynitrite or a cell-permeant superoxide dismutase mimetic reversed the Hcy-induced suppression of NO production by endothelial cells. In conclusion, electrochemical detection of NO release from cultured endothelial cells demonstrated that concentrations of Hcy >20 μM produce a significant indirect suppression of eNOS activity without any discernible effects on its expression. Folates, superoxide ions, and peroxynitrite scavengers restore the NO-generating activity to eNOS, collectively suggesting that cellular redox state plays an important role in HCy-suppressed NO-generating function of this enzyme.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document