scholarly journals Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues.

1990 ◽  
Vol 38 (10) ◽  
pp. 1479-1486 ◽  
Author(s):  
K J McCarthy ◽  
J R Couchman

Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan sulfate proteoglycans previously described.

1989 ◽  
Vol 109 (6) ◽  
pp. 3187-3198 ◽  
Author(s):  
K J McCarthy ◽  
M A Accavitti ◽  
J R Couchman

Reichert's membrane, an extraembryonic membrane present in developing rodents, has been proposed as an in vivo model for the study of basement membranes. We have used this membrane as a source for isolation of basement membrane proteoglycans. Reichert's membranes were extracted in a guanidine/3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate buffer followed by cesium chloride density-gradient ultracentrifugation under dissociative conditions. The proteoglycans were subsequently purified from the two most dense fractions (greater than 1.3 g/ml) by ion-exchange chromatography. Mice were immunized with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were purified from both supernatant and tissue fractions of Reichert's membranes incubated in short-term organ culture in the presence of radiolabel. The resultant affinity-purified proteoglycan samples were examined by gel filtration, SDS-PAGE, and immunoblotting. This proteoglycan is of high molecular weight (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core protein were also recognized by all four mAbs. Indirect immunofluorescence of rat tissue sections stained with these antibodies reveal a widespread distribution of this proteoglycan, localized specifically to Reichert's membrane and nearly all basement membranes of rat tissues. In addition to heparan sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component.


1986 ◽  
Vol 34 (8) ◽  
pp. 1013-1019 ◽  
Author(s):  
B Voss ◽  
J Glössl ◽  
Z Cully ◽  
H Kresse

Polyclonal antibodies against the core protein of the small chondroitin sulfate-dermatan sulfate proteoglycan from human skin fibroblast secretions were used, after affinity-purification, as a probe to study localization of crossreactive material in several human tissues by indirect immunocytochemistry. In contrast to skin, kidney, and the adventitial layer of aorta, positive staining of brain, liver, cartilage, and intimal and medial layers of aorta required pre-treatment of tissue sections with chondroitin ABC lyase. In all tissues investigated, antigenic material was present in the interstitial space. Filamentous structures were perpendicularly oriented towards basement membranes. In liver, specific staining was seen along the sinusoidal walls. Reticular fibers with or without focal condensations were seen in cerebral cortex and cerebellum. The results suggest a role of small chondroitin sulfate-dermatan sulfate proteoglycan in cell-matrix interactions.


1997 ◽  
Vol 136 (2) ◽  
pp. 433-444 ◽  
Author(s):  
Rong-Rong Wu ◽  
John R. Couchman

Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now obtained cDNA clones encoding the entire bamacan core protein of Mr = 138 kD, which reveal a five domain, head-rod-tail configuration. The head and tail are potentially globular, while the central large rod probably forms coiled-coil structures, with one large central and several very short interruptions. This molecular architecture is novel for an extracellular matrix molecule, but it resembles that of a group of intracellular proteins, including some proposed to stabilize the mitotic chromosome scaffold. We have previously proposed a similar stabilizing role for bamacan in the basement membrane matrix. The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs. At the junctions between the distal globular domains and the coiled-coil regions lie glycosylation sites, with up to three N-linked oligosaccharides and probably three chondroitin chains. Three other Ser-Gly dipeptides are unfavorable for substitution. Fusion protein antibodies stained basement membranes in a pattern commensurate with bamacan, and they also Western blotted bamacan core protein from rat L2 cell cultures. The antibodies could also specifically immunoprecipitate an in vitro transcription/translation product from a full-length bamacan cDNA. The unusual structure of this proteoglycan is indicative of specific functional roles in basement membrane physiology, commensurate with its distinct expression in development and changes in disease models.


Biochimie ◽  
2016 ◽  
Vol 131 ◽  
pp. 85-95 ◽  
Author(s):  
José L. Neira ◽  
Encarnación Medina-Carmona ◽  
José G. Hernández-Cifre ◽  
Laia Montoliu-Gaya ◽  
Ana Cámara-Artigás ◽  
...  

2015 ◽  
Vol 290 (12) ◽  
pp. 7823-7832 ◽  
Author(s):  
Wenshuang Wang ◽  
Wenjun Han ◽  
Xingya Cai ◽  
Xiaoyu Zheng ◽  
Kazuyuki Sugahara ◽  
...  

1993 ◽  
Vol 123 (5) ◽  
pp. 1279-1287 ◽  
Author(s):  
R Bar-Shavit ◽  
Y Eskohjido ◽  
J W Fenton ◽  
J D Esko ◽  
I Vlodavsky

We have previously demonstrated that chemically modified thrombin preparations induce endothelial cell (EC) adhesion, spreading and cytoskeletal reorganization via an Arg-Gly-Asp (RGD) sequence and the alpha v beta 3 integrin. Native thrombin, however, did not exhibit adhesive properties, consistent with crystal structure analysis, showing that Gly-Asp residues of the RGD epitope are buried within the molecule. We have now identified a possible physiological mean of converting thrombin to an adhesive protein. Plasmin, the major end product of the fibrinolytic system, converted thrombin to an adhesive protein for EC in a time and dose-dependent manner. EC adhesion and spreading was also induced by a low molecular weight (approximately 3,000 D) cleavage fragment generated upon incubation of thrombin with plasmin. Cell adhesion mediated by this fragment was completely inhibited by the synthetic peptide GRGDSP. Conversion of thrombin to an adhesive molecule was significantly enhanced in the presence of heparin or heparan sulfate, while other glycosaminoglycans (GAGs) (e.g., dermatan sulfate, keratan sulfate, chondroitin sulfate) had no effect. The role of cell surface heparan sulfate in thrombin conversion to EC adhesive protein was investigated using CHO cell mutants defective in various aspects of GAG synthesis. Incubation of both thrombin and a suboptimal amount of plasmin on the surface of formaldehyde fixed wild-type CHO-KI cells resulted in an efficient conversion of thrombin to an adhesive molecule, as indicated by subsequent induction of EC attachment. In contrast, there was no effect to incubation of thrombin and plasmin with fixed CHO mutant cells lacking both heparan sulfate and chondroitin sulfate, or with cells expressing no heparan sulfate and a three-fold increase in chondroitin sulfate. A similar gain of adhesive properties was obtained upon incubation of thrombin and plasmin in contact with native, but not heparinase-treated extracellular matrix (ECM) produced by cultured ECs. It appears that cell surface and ECM-associated heparan sulfate modulate thrombin adhesive properties through its heparin binding site in a manner that enables suboptimal amounts of plasmin to expose the RGD domain. Our results demonstrate, for the first time, a significant modulation of thrombin molecule by heparin, resulting in its conversion to a potent adhesive protein for ECs. This conversion is most effective in contact with cell surfaces, basement membranes and ECM.


Sign in / Sign up

Export Citation Format

Share Document