scholarly journals A novel modification of the avidin-biotin complex method for immunohistochemical studies of transgenic mice with murine monoclonal antibodies.

1992 ◽  
Vol 40 (9) ◽  
pp. 1319-1328 ◽  
Author(s):  
K M Fung ◽  
A Messing ◽  
V M Lee ◽  
J Q Trojanowski

When mouse tissues are probed with murine monoclonal antibodies (MAb) by indirect immunohistochemistry, the secondary antibody detects tissue-bound MAb and irrelevant, endogenous mouse immunoglobulins. The latter are a source of confounding background, especially in diseased tissues. To circumvent this problem, we generated complexes of primary MAb and biotinylated secondary antibodies in vitro for use as antigen-specific probes. After blocking free binding sites in the complexed secondary antibodies with normal mouse serum, the complexes were applied to mouse tissue sections and tissue-bound complexes were visualized with an avidin-biotin detection system. Complexes formed with 12 different rat or mouse MAb were used to probe sections of normal mice, tumor-bearing transgenic mice, and mice with tumor xenografts. The staining patterns produced by these probes reflected the specificity of the MAb in the complexes, and the labeling of irrelevant, endogenous mouse immunoglobulins was reduced substantially. This novel, indirect immunohistochemical method can be exploited to study normal and diseased mouse tissues using a variety of murine MAb.

1996 ◽  
Vol 11 (1) ◽  
pp. 46-49 ◽  
Author(s):  
S. Nicholson ◽  
M. Fox ◽  
A. Epenetos ◽  
G. Rustin

Cancer therapy utilising radiolabelled murine monoclonal antibodies frequently leads to the production of Human Anti-Mouse Antibodies (HAMA) in the recipient. HAMA interferes with “sandwich” immunoassays, such as those for tumour markers, rendering results unreliable. Published methods for eliminating HAMA from serum are not suitable for use in a laboratory which is processing a large number of assays using an automated system. We report on the use of Immunoglobulin Inhibiting Reagent (IIR) in CA125 assays from recipients of intraperitoneal radioimmunotherapy who had spuriously elevated results due to HAMA. IIR was found to be comparable to the admixture of mouse serum as a way of eliminating the effect of HAMA. IIR is ideally suited to use with an automated assay process.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3495-3495 ◽  
Author(s):  
Robert Pachlinger ◽  
Rudolf Hartmann ◽  
Andrea Kolm ◽  
Erwin Panholzer ◽  
Nadja Ullrich ◽  
...  

Abstract Background: Tissue factor pathway inhibitor (TFPI) is a key regulator of the extrinsic coagulation pathway. It inhibits FXa generation by forming a quaternary complex containing factor VIIa (FVIIa), tissue factor (TF), factor Xa (FXa), and TFPI. Two TFPI isoforms, TFPI alpha (TFPI a) and TFPI beta (TFPI b), have been identified, which differ in their C-terminal part due to alternative mRNA splicing events. TFPI a consists of three Kunitz domains (KD), while TFPI b contains two KDs and a C terminal GPI anchor linking the protein to endothelial cell surface. Deletion of the first Kunitz domain of TFPI, which is present in TFPI a and TFPI b in mice is known to be incompatible with viability due to intrauterine lethality (Huang et al., 1997). Aim: To generate transgenic humanized TFPI mice in which mouse (m)-TFPI is entirely replaced by human (hu)-TFPI, in order to facilitate analysis of specific anti hu-TFPI antagonists without interference from m-TFPI. Methods: Integration of the targeting vector, consisting of the m TFPI signal sequence, followed by the human TFPI cDNA and subsequent breeding analysis, was followed by genomic PCR. A sophisticated breeding strategy was used to entirely delete m-TFPI exon 4, which encodes KD1, in humanized transgenic mice. Expression of hu-/m-TFPI a and b mRNAs was analyzed by reverse transcription, cloning, and sequencing of the obtained DNA fragments. Protein levels of hu- and m-TFPI in plasma of transgenic and wild-type (wt) mice were analyzed using species specific ELISAs. Immunoprecipitation experiments in plasma and various mouse tissues are being performed to obtain more information on the presence and distribution of the hu-TFPI protein in transgenic mice. Results: Homozygous humanized TFPI mice were viable and exhibited no obvious abnormalities. Animals showed normal litter size with equal numbers of female and male pups. Genomic PCRs revealed proper integration of the targeting vector into the mouse chromosome and the homozygous status with the expected deletion of m-TFPI exon 4. Expression analyses of humanized TFPI mice on mRNA level demonstrated the absence of full length m-TFPI a and the presence of the humanized TFPI mRNA. Alternative spliced m-TFPI b messages lacking exons three and four were identified, likely leading to a nonfunctional protein. Full length hu-TFPI a mRNA was detected in various tissues in the humanized TFPI mice. The TFPI protein level in plasma from humanized mice was below the detection limit of the ELISA and at least ~300 fold below that for wt mice. Conclusion: Low levels of hu-TFPI may compensate the function of m-TFPI in vivo and circumvent embryonic lethality. Furthermore, we established a new mouse model which allows the regulation of physiologic and pathologic pathways to be assessed at TFPI plasma concentrations below the limit of detection. Disclosures Hoellriegl: Baxalta Innovations GmbH: Employment. Scheiflinger:Baxalta Innovations GmbH: Employment.


2021 ◽  
pp. 002215542110332
Author(s):  
Francesco Mascadri ◽  
Roberta Ciccimarra ◽  
Maddalena M. Bolognesi ◽  
Fabio Stellari ◽  
Francesca Ravanetti ◽  
...  

Immunodetection on mouse routinely processed tissue via antibodies raised in mice faces cross-reactivity of the secondary anti-mouse reagents with endogenous immunoglobulins, which permeate the tissue. Various solutions to this problem have been devised and include endogenous Ig block with anti-mouse Fab fragments or directly conjugated primary antibodies. Mouse isotype-specific antibodies, differently from reagents directed against both heavy and light chains, fail to detect endogenous Ig after fixation and embedding, while providing a clean and specific detection system for mouse antibodies on mouse routinely processed tissue.


2008 ◽  
Vol 56 (11) ◽  
pp. 969-975 ◽  
Author(s):  
Rustam R. Mundegar ◽  
Elke Franke ◽  
Ralf Schäfer ◽  
Margit Zweyer ◽  
Anton Wernig

Antigen detection with indirect immunohistochemical methods is hampered by high background staining if the primary antibody is from the same species as the examined tissue. This high background can be eliminated in unfixed cryostat sections of mouse skeletal muscle by boiling sections in PBS, and several proteins including even the low abundant dystrophin protein can then be easily detected with murine monoclonal antibodies. However, not all antigens withstand the boiling procedure. Immunoreactivity of some of these antigens can be restored by subsequent washing in Triton X-100, whereas immunoreactivity of other proteins is not restored by this detergent treatment. When such thermolabile proteins are labeled with polyclonal primary antibodies followed by dichlorotriazinylaminofluorescein-conjugated secondary antibodies and boiled, the fluorescence signal persists, and sections can then be processed with a monoclonal antibody for double immunostaining of a protein unaffected by boiling. This stability of certain fluorochromes on heating can also be exploited for double immunofluorescence labeling of two different thermostable proteins with murine monoclonal antibodies as well as for combination with Y-chromosome fluorescence in situ hybridization. Our method should extend the range of monoclonal antibodies applicable to tissues derived from the same species as the monoclonal antibodies.


1995 ◽  
Vol 43 (3) ◽  
pp. 313-320 ◽  
Author(s):  
J L Whiteland ◽  
S M Nicholls ◽  
C Shimeld ◽  
D L Easty ◽  
N A Williams ◽  
...  

We describe a method for immunohistochemical localization of T-cells, CD4+ T-cells, CD8+ T-cells, B-cells, activated lymphocytes, major histocompatibility complex (MHC) class II antigens, macrophages, dendritic cells, and granulocytes in rat and mouse tissue fixed in periodate-lysine-paraformaldehyde (PLP) and embedded in paraffin. Rat and mouse spleen and eyes were fixed in PLP for 18-24 hr, rapidly dehydrated, infiltrated under vacuum with paraffin at 54 degrees C, sectioned, and stained with appropriate monoclonal antibodies (MAbs). Sections of PLP-fixed, paraffin-embedded spleen were compared with acetone-fixed frozen spleen sections with respect to morphology and staining quality. Nine of 10 MAbs to rat antigens and eight of nine MAbs to mouse antigens stained paraffin sections equally or more intensely than frozen sections. The two MAbs that showed weaker staining still gave good staining on paraffin sections. Paraffin-embedded rat and mouse eyes were easier to section serially than frozen eyes, showed superior morphology, and individually stained cells were readily identified. Therefore, a combination of PLP fixation and low-temperature paraffin embedding permits detection of the major types of immune cell in rat and mouse tissues while maintaining good morphology, particularly in diseased, damaged, or delicate tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wenbo Jiang ◽  
Julius Wong ◽  
Hyon-Xhi Tan ◽  
Hannah G. Kelly ◽  
Paul G. Whitney ◽  
...  

AbstractThe ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre‐clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret‐reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Sign in / Sign up

Export Citation Format

Share Document