scholarly journals Localization of hyaluronic acid in human articular cartilage.

1994 ◽  
Vol 42 (4) ◽  
pp. 513-522 ◽  
Author(s):  
A Asari ◽  
S Miyauchi ◽  
S Kuriyama ◽  
A Machida ◽  
K Kohno ◽  
...  

To demonstrate localization of hyaluronic acid (HA) in articular cartilage of the human femur, biotinylated HA-binding region, which specifically binds HA molecules, was applied to the tissue. In sections fixed by 2% paraformaldehyde-2% glutaraldehyde, HA staining was detected in lamina splendens and chondrocytes in the middle zone. By pretreatment with trypsin, intense HA staining appeared in the extracellular matrix of the deep zone and weak staining in the superficial and middle zones. Moreover, pre-treatment with chondroitinase ABC (CHase ABC) intensely enhanced the stainability for HA in the superficial and middle zones and weakly in the deeper zone. Combined pre-treatment of trypsin with CHase ABC abolished intra- and extracellular staining for HA in all zones. By microbiochemical study, the concentrations of HA and dermatan sulfate were high in the middle zone, whereas those of chondroitin sulfate and keratan sulfate were high in the deep zone. These results suggest that HA is abundantly synthesized in and secreted from the chondrocytes, particularly in the middle zone, whereas it is largely masked by proteoglycan constituents in the extracellular matrix.

1992 ◽  
Vol 40 (11) ◽  
pp. 1693-1704 ◽  
Author(s):  
A Asari ◽  
S Miyauchi ◽  
K Miyazaki ◽  
A Hamai ◽  
K Horie ◽  
...  

To demonstrate the intra- and extracellular localization of hyaluronic acid (HA) in articular cartilage of the rabbit tibia, biotinylated HA binding region, which specifically binds to the HA molecule, was applied to the tissue. In comparison with the localization of HA, that of chondroitin sulfate (CS), keratan sulfate (KS), and the protein core (PC) of the proteoglycan was examined by immunohistochemistry. Strong positive staining for HA was detected in chondrocytes located in the transition between the superficial and middle zones of the tissue. Pre-treatment with chondroitinase ABC, keratanase II, or trypsin enhanced the stainability for HA in peri- and intercellular matrices. Immunohistochemistry with or without enzymatic pre-treatment demonstrated that immunoreactivity for CS, KS, and PC was distinctly discerned in chondrocytes and in the extracellular matrix located in the middle and deep zones. In particular, the immunoreactivity for KS and PC was augmented by pre-treatment with chondroitinase ABC not only in chondrocytes but in the extracellular matrix located in the middle and deep zones. Microbiochemical analysis corresponded well with histochemical and immunohistochemical results. These results suggest that HA is abundantly synthesized and secreted in chondrocytes located in the transition between the superficial and middle zones.


1990 ◽  
Vol 38 (3) ◽  
pp. 319-324 ◽  
Author(s):  
M Takagi ◽  
H Hishikawa ◽  
Y Hosokawa ◽  
A Kagami ◽  
F Rahemtulla

We examined immunocytochemically the type and distribution of glycosaminoglycans and proteoglycans (PG) in predentin and dentin demineralized with EDTA after aldehyde fixation of rat incisors using (a) four monoclonal antibodies (1-B-5,9-A-2,3-B-3, and 5-D-4) which recognize epitopes in unsulfated chondroitin (C0-S), chondroitin 4-sulfate (C4-S), chondroitin 6-sulfate (C6-S), and keratan sulfate (KS) associated with the PG, and (b) monoclonal (5-D-5) and polyclonal antibodies specific for the core protein of large and small dermatan sulfate (DS) PG. Light microscope immunoperoxidase staining after pre-treatment of tissue sections with chondroitinase ABC localized the majority of stainable PG (C4-S, KS, DSPG, C0-S, and C6-S) in predentin and, to a lesser extent (C4-S and small DSPG), in the dentin matrix. The former site demonstrated relatively homogeneous PG distribution, whereas the latter site revealed that strong staining of C4-S and small DSPG was confined mostly to dentinal tubules surrounding odontoblastic processes, with only weak staining in the rest of the dentin matrix. These results indicate that there is not only a definite difference between PG of predentin and dentin but also a selective decrease in the concentration or alteration of these macromolecules during dentinogenesis and mineralization.


1985 ◽  
Vol 232 (1) ◽  
pp. 111-117 ◽  
Author(s):  
M T Bayliss ◽  
P J Roughley

Proteoglycan was extracted from adult human articular cartilage from both the knee and the hip, and A1 preparations were prepared by CsCl-density-gradient centrifugation at starting densities of 1.69 and 1.5 g/ml. Irrespective of whether the cartilage was diced to 1 mm cubes or sectioned to 20 micron slices there was always a lower proportion of both protein and proteoglycan aggregate in the A1 preparation prepared at 1.69 g/ml. Furthermore, the addition of exogenous hyaluronic acid to the extracts before centrifugation did not improve the yield of aggregate at 1.69 g/ml. These results were not affected by the presence of proteinase inhibitors in the extraction medium. It appears that adult human articular cartilage contains a high proportion of low-density proteoglycan subunits and hyaluronic acid-binding proteins that make most of the re-formed proteoglycan aggregates of a lower density than is usually encountered with younger human and mammalian hyaline cartilages.


1978 ◽  
Vol 176 (3) ◽  
pp. 683-693 ◽  
Author(s):  
M T Bayliss ◽  
S Y Ali

1. Analysis of the purified proteoglycans extracted from normal human articular cartilage with 4M-guanidinium chloride showed that there was an age-related increase in their content of protein and keratan sulphate. 2. The hydrodynamic size of the dissociated proteoglycans also decreased with advancing age, but there was little change in the proportion that could aggregate. 3. Results suggested that some extracts of aged-human cartilage had an increased content of hyaluronic acid compared with specimens from younger patients. 4. Dissociated proteoglycans, from cartilage of all age groups, bind to hyaluronic acid and form aggregates in direct proportion to the hyaluronic acid concentration. 5. Electrophoretic heterogeneity of the dissociated proteoglycans was demonstrated on polyacrylamide/agarose gels. The number of proteoglycan species observed was also dependent on the age of the patient.


1982 ◽  
Vol 206 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Charles J. Malemud ◽  
Victor M. Goldberg ◽  
Roland W. Moskowitz ◽  
Lee L. Getzy ◽  
Robert S. Papay ◽  
...  

Proteoglycan biosynthesis by human osteochondrophytic spurs (osteophytes) obtained from osteoarthritic femoral heads at the time of surgical joint replacement was studied under defined culture conditions in vitro. Osteophytes were primarily present in two anatomic locations, marginal and epi-articular. Minced tissue slices were incubated in the presence of [35S]sulphate or [14C]glucosamine. Osteophytes incorporated both labelled precursors into proteoglycan, which was subsequently characterized by CsCl-isopycnic-density-gradient ultracentrifugation and chromatography on Sepharose CL-2B. The material extracted with 0.5m-guanidinium chloride showed 78.1% of [35S]sulphate in the A1 fraction after centrifugation. Only 23.0% of the [35S]sulphate in this A1 fraction was eluted in the void volume of Sepharose CL-2B under associative conditions. About 60–80% of the [35S]sulphate in the tissue 4m-guanidinium chloride extract was associated with monomeric proteoglycan (fraction D1). The average partition coefficient (Kav.) of the proteoglycan monomer on Sepharose CL-2B was 0.28–0.33. Approx. 12.4% of this monomer formed stable aggregates with high-molecular-weight hyaluronic acid in vitro. Sepharose CL-2B chromatography of fractions with lower buoyant densities (fractions D2–D4) demonstrated elution profiles on Sepharose CL-2B substantially different than that of fraction D1, indicative of the polydisperse nature of the newly synthesized proteoglycan. Analysis of the composition and chain size of the glycosaminoglycans showed the following: (1) preferential elution of both [35S]sulphate and [14C]glucosamine in the 0.5m-LiCl fraction on DEAE-cellulose; (2) the predominant sulphated glycosaminoglycan was chondroitin 6-sulphate (60–70%), with 9–11% keratan sulphate in the monomer proteoglycan; (3) Kav. values of 0.38 on Sephadex G-200 and 0.48 on Sepharose CL-6B were obtained with papain-digested and NaBH4-treated D1 monomer respectively. A comparison of the synthetic with endogenous glycosaminoglycans indicated similar types. These studies indicated that human osteophytes synthesized in vitro sulphated proteoglycans with some characteristics similar to those of mature human articular cartilage, notably in the size of their proteoglycan monomer and predominance of chondroitin 6-sulphate. They differed from articular cartilage primarily in the lack of substantial quantities of keratan sulphate and aggregation properties associated with monomer interaction with hyaluronic acid.


2020 ◽  
pp. 002215542094640 ◽  
Author(s):  
Sylvain D. Vallet ◽  
Olivier Clerc ◽  
Sylvie Ricard-Blum

The six mammalian glycosaminoglycans (GAGs), chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, hyaluronan, and keratan sulfate, are linear polysaccharides. Except for hyaluronan, they are sulfated to various extent, and covalently attached to proteins to form proteoglycans. GAGs interact with growth factors, morphogens, chemokines, extracellular matrix proteins and their bioactive fragments, receptors, lipoproteins, and pathogens. These interactions mediate their functions, from embryonic development to extracellular matrix assembly and regulation of cell signaling in various physiological and pathological contexts such as angiogenesis, cancer, neurodegenerative diseases, and infections. We give an overview of GAG–protein interactions (i.e., specificity and chemical features of GAG- and protein-binding sequences), and review the available GAG–protein interaction networks. We also provide the first comprehensive draft of the GAG interactome composed of 832 biomolecules (827 proteins and five GAGs) and 932 protein–GAG interactions. This network is a scaffold, which in the future should integrate structures of GAG–protein complexes, quantitative data of the abundance of GAGs in tissues to build tissue-specific interactomes, and GAG interactions with metal ions such as calcium, which plays a major role in the assembly of the extracellular matrix and its interactions with cells. This contextualized interactome will be useful to identify druggable GAG–protein interactions for therapeutic purpose:


1992 ◽  
Vol 284 (2) ◽  
pp. 589-593 ◽  
Author(s):  
P Loulakis ◽  
A Shrikhande ◽  
G Davis ◽  
C A Maniglia

Bovine articular cartilage was cultured both in the presence and in the absence of human recombinant interleukin-1 alpha (IL-1) (100 units/ml). Addition of this cytokine stimulated matrix degradation approx. 3-fold. This increased degradation permitted characterization of the large chondroitin sulphate proteoglycan (aggrecan) fragments accumulating in the media. When compared with controls, the proteoglycans isolated from the medium of cultures treated with IL-1 exhibited a decrease in the Kav. (control 0.25; IL-1-treated 0.37), determined by Sepharose CL-2B chromatography. This decrease in proteoglycan size was accompanied by a decreased ability of these monomers to associate with hyaluronic acid. Thus only 20% of the proteoglycans isolated from the medium of IL-1-treated cultures, compared with 39% for control cultures, had the capacity to form high-M(r) aggregates with hyaluronic acid. SDS/PAGE analysis of the proteoglycans from the media of IL-1-treated cultures demonstrated several large proteoglycan protein-core bands (M(r) 144,000-380,000). The protein-core bands with M(r) 144,000-266,000 exhibited a significantly decreased reactivity with monoclonal antibody 1-C-6 (specific for domains G1 and G2). The N-terminal amino acid sequence of four of these protein-core bands (M(r) 144,000, 173,000, 214,000 and 266,000) yielded sequences LGQRPPV-Y-PQLF(E), AGEGP(S)GILEL-GAP(S)-AP(D)M, GLG-VEL-LPGE and (A)RGSVIL-AKPDFEV-P-A. A comparison of these N-terminal amino acid sequences with the published proteoglycan sequence for bovine nasal cartilage [Oldberg, Antonsson & Heinegård (1987) Biochem. J. 243, 255-259], rat chondrosarcoma [Doege, Sasaki, Horigan, Hassell & Yamada (1987) J. Biol. Chem. 262, 17757-17769] and human articular cartilage [Doege, Sasaki, Kimura & Yamada (1991) J. Biol. Chem. 266, 894-902] permitted assignment of their relative positions on the core protein. Furthermore, on the basis of this similarity to published sequence, putative sites of enzymic cleavage were constructed. These theoretical cleavage sites revealed a glutamic acid residue in the P1 position and an uncharged polar or non-polar residue in the P1′ position.


1979 ◽  
Vol 59 (1) ◽  
pp. 167-179 ◽  
Author(s):  
T. NAKANO ◽  
F. X. AHERNE ◽  
J. R. THOMPSON

Twenty-five crossbred boars reared under normal conditions were serially slaughtered at the age of 3 days, and 5, 10, 20 and 30 wk. Five boars were slaughtered at each age and morphological, histochemical and biochemical age-related changes in femoral condylar articular cartilage were studied. No osteochondrotic joints were found in pigs 10 wk of age or younger, while 7 of the 10 boars slaughtered at 20 and 30 wk of age were osteochondrotic. Cartilage thickness increased (P < 0.05) until the age of 5 wk and decreased (P < 0.05) thereafter. Cell density decreased (P < 0.05) as age advanced. Age-associated changes found in the chemical composition of the cartilage were an increase in the concentration of dry matter and hydroxyproline and a decrease in the concentration of glycosaminoglycans (GAG) including chondroitin sulfate (ChS), keratan sulfate and hyaluronic acid. The proportions of soluble proteoglycan and 4-sulfated disaccharide from the ChS fraction decreased (P < 0.05) while the proportion of 6-sulfated disaccharide from ChS increased (P < 0.05). Osteochondrosis was observed as a disturbed endochondral ossification, and softening and fracture of the cartilage. The former was accompanied by a loss of intercellular GAG and cell necrosis, and the latter by local losses of GAG and cells. Osteochondrotic cartilage also contained higher proportions of soluble proteoglycan and 6-sulfated disaccharide, and lower proportions of 4-sulfated disaccharide than did the visually normal cartilage.


Sign in / Sign up

Export Citation Format

Share Document