Inelastic response spectra of self-centering structures with the flag-shaped hysteretic response subjected to near-fault pulse-type ground motions

2021 ◽  
pp. 875529302110003
Author(s):  
Huihui Dong ◽  
Qiang Han ◽  
Xiuli Du ◽  
Shoushan Cheng ◽  
Haifang He

Many studies on the inelastic response spectra have mainly focused on structures with the conventional hysteretic behavior. However, for self-centering structures with the flag-shaped (FS) hysteretic behavior, the corresponding study is limited. The primary aim of this study is to investigate the inelastic response spectra of self-centering structures with FS hysteretic behavior subjected to the near-fault pulse-type ground motion. To this end, the smooth FS hysteretic model based on Bouc–Wen model is developed, and the characteristics of pulse-type ground motions are described in detail. It is found that the general features of inelastic response spectra of the FS model are sensitive to the acceleration-, velocity-, and displacement-sensitive spectral regions of the ground motion. The inelastic displacement, velocity, acceleration, and ductility factor spectra of the FS hysteretic model for pulse-type ground motions are much larger than those for ordinary ground motions, while the residual displacement spectra under the two types of ground motions are both very small due to its self-centering capacity. Moreover, the inelastic response spectra are affected by the ground motion characteristics and structural hysteresis behavior, especially the large pulse period and peak ground velocity (PGV) significantly increase the inelastic displacement, velocity, and acceleration spectra.

2020 ◽  
Vol 24 (1) ◽  
pp. 119-133
Author(s):  
Huihui Dong ◽  
Qiang Han ◽  
Xiuli Du ◽  
Canxing Qiu

Many studies on the strength reduction factor mainly focused on structures with the conventional hysteretic models. However, for the self-centering structure with the typical flag-shaped hysteretic behavior, the corresponding study is limited. The main purpose of this study is to investigate the strength reduction factor of the self-centering structure with flag-shaped hysteretic behavior subjected to near-fault pulse-like ground motions by the time history analysis. For this purpose, the smooth flag-shaped model based on Bouc-Wen model which can show flag-shaped hysteretic behavior is first described. The strength reduction factor spectra of the flag-shaped model are then calculated under 85 near-fault pulse-like ground motions. The influences of the ductility level, vibration period, site condition, hysteretic parameter, and hysteretic model are investigated statistically. For comparison, the strength reduction factors under ordinary ground motions are also analyzed. The results show that the strength reduction factor from near-fault pulse-like ground motions is smaller. Finally, a predictive model is proposed to estimate the strength reduction factor for the self-centering structure with the flag-shaped model under near-fault pulse-like ground motions.


2012 ◽  
Vol 594-597 ◽  
pp. 1688-1691
Author(s):  
Ming Li ◽  
Qiao Jin ◽  
Yong Liu ◽  
He Yuan ◽  
Zhe Zhe Sun

during the process of fitting or synthesizing near-fault ground motion,parameters of the equivalent velocity pulse need to be decided based on seismic records.Thus, it is a key problem that how to identify these parameters from the records.Pulse period and pulse peak velocity are important parameters in the equivalent velocity pulse models.In this study,various methods on identifying these parameters are reviewed.It is shown that all the existing methods have limitations,especially for the irregular seismic records.Finally,problems need to be further studied is pointed out.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Jagabandhu Dixit ◽  
D. M. Dewaikar ◽  
R. S. Jangid

Seismic hazards during many disastrous earthquakes are observed to be aggravating at the sites with the soft soil deposits due to amplification of ground motion. The characteristics of strong ground motion, the site category, depth of the soil column, type of rock strata, and the dynamic soil properties at a particular site significantly influence the free field motion during an earthquake. In this paper, free field surface motion is evaluated via seismic site response analysis that involves the propagation of earthquake ground motions from the bedrock through the overlying soil layers to the ground surface. These analyses are carried out for multiple near-fault seismic ground motions at 142 locations in Mumbai city categorized into different site classes. The free field surface motion is quantified in terms of amplification ratio, spectral relative velocity, and spectral acceleration. Seismic site coefficients at different time periods are also evaluated for each site category due to near-fault ground motions from the acceleration response spectra of free field surface motion at each site and the corresponding acceleration response spectra at a reference rock outcrop site.


2020 ◽  
Vol 110 (4) ◽  
pp. 1474-1494 ◽  
Author(s):  
Sean Kamran Ahdi ◽  
Silvia Mazzoni ◽  
Tadahiro Kishida ◽  
Pengfei Wang ◽  
Chukwuebuka C. Nweke ◽  
...  

ABSTRACT We present a database and analyze ground motions recorded during three events that occurred as part of the July 2019 Ridgecrest earthquake sequence: a moment magnitude (M) 6.5 foreshock on a left-lateral cross fault in the Salt Wells Valley fault zone, an M 5.5 foreshock in the Paxton Ranch fault zone, and the M 7.1 mainshock, also occurring in the Paxton Ranch fault zone. We collected and uniformly processed 1483 three-component recordings from an array of 824 sensors spanning 10 seismographic networks. We developed site metadata using available data and multiple models for the time-averaged shear-wave velocity in the upper 30 m (VS30) and for basin depth terms. We processed ground motions using Next Generation Attenuation (NGA) procedures and computed intensity measures including spectral acceleration at a number of oscillator periods and inelastic response spectra. We compared elastic and inelastic response spectra to seismic design spectra in building codes to evaluate the damage potential of the ground motions at spatially distributed sites. Residuals of the observed spectral accelerations relative to the NGA-West2 ground-motion models (GMMs) show good average agreement between observations and model predictions (event terms between about −0.3 and 0.5 for peak ground acceleration to 5 s). The average attenuation with distance is also well captured by the empirical NGA-West2 GMMs, although azimuthal variations in attenuation were observed that are not captured by the GMMs. An analysis considering directivity and fault-slip heterogeneity for the M 7.1 event demonstrates that the dispersion in the near-source ground-motion residuals can be reduced.


1967 ◽  
Vol 57 (6) ◽  
pp. 1193-1220 ◽  
Author(s):  
G. W. Housner ◽  
M. D. Trifunac

Abstract Integrated velocities and displacements show that near the fault at Cholame the surface motion exhibited a transient horizontal displacement pulse of approximately ten inches amplitude and one and one-half seconds duration, normal to the fault. Although 50 per cent of g ground acceleration was recorded at the fault, the ground motion attenuated rapidly with distance and at ten miles from the fault the maximum acceleration was reduced to one-tenth of its near-fault value. The ground motion also changed its character with distance, losing its pulse-like directional characteristic and becoming isotropic. Computed response spectra are presented and the large spectrum ordinates for this shock of relatively small magnitude and moderate destructiveness indicate that in an engineering sense the Parkfield ground motion is in a different class from such large destructive ground motions as El Centro 1940, Tehachapi 1952, and Olympia 1949.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


Sign in / Sign up

Export Citation Format

Share Document