Ecological performance optimisation for an open-cycle ICR gas turbine power plant Part 2 - optimisation

2010 ◽  
Vol 83 (4) ◽  
pp. 242-248 ◽  
Author(s):  
W H Wang ◽  
L G Chen ◽  
F R Sun
2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Alhassan Salami Tijani ◽  
Mohd Rashid Halim

The purpose of this paper is to study the performance of an existing open cycle gas turbine power plant at Putrajaya power station. At compressor inlet temperature of 298.90K, thermal efficiency of 31 % was observed for the existing or current cycle whiles the modified configuration yielded thermal efficiency of 45 %, this result in 14 % increase in thermal efficiency. At pressure ratio of 3.67, thermal efficiency of about 31.06% and 44% was recorded for the current cycle and regenerative cycle respectively. The efficiency of both cycles increase considerably with increase in pressure ratio, but at pressure ratio of about 7, only a small increase in efficiency for both cycles was observed. The optimum value of the efficiencies for both cycles that correspond to pressure ratio of 7 is 43.06 and 56% for the current cycle and the regenerative cycle respectively.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 705
Author(s):  
Thodsaphon Jansaengsuk ◽  
Mongkol Kaewbumrung ◽  
Wutthikrai Busayaporn ◽  
Jatuporn Thongsri

To solve the housing damage problem of a fractured compressor blade (CB) caused by an impact on the inner casing of a gas turbine in the seventh stage (from 15 stages), modifications of the trailing edge (TE) of the CB have been proposed, namely 6.5 mm curved cutting and a combination of 4 mm straight cutting with 6.5 mm curved cutting. The simulation results of the modifications in both aerodynamics variables Cl and Cd and the pressure ratio, including structural dynamics such as a normalized power spectrum, frequency, total deformation, equivalent stress, and the safety factor, found that 6.5 mm curved cutting could deliver the aerodynamics and structural dynamics similar to the original CB. This result also overcomes the previous work that proposed 5.0 mm straight cutting. This work also indicates that the operation of a CB gives uneven pressure and temperature, which get higher in the TE area. The slightly modified CB can present the difference in the properties of both the aerodynamics and the structural dynamics. Therefore, any modifications of the TE should be investigated for both properties simultaneously. Finally, the results from this work can be very useful information for the modification of the CB in the housing damage problem of the other rotating types of machinery in a gas turbine power plant.


Sign in / Sign up

Export Citation Format

Share Document