A new method for multi-pass single-point incremental forming of vertical wall square box with small corner radius

2015 ◽  
Vol 19 (sup5) ◽  
pp. S5-543-S5-545
Author(s):  
Z. Liuru ◽  
Z. Yinmei
2014 ◽  
Vol 936 ◽  
pp. 1725-1729
Author(s):  
Qiu Cheng Wang ◽  
Hai Han Hu ◽  
Jin Han Wu ◽  
Jiang Cao

Two point incremental forming is proposed to form the thin sheet into the desired shape in this paper. The forming accuracy of two point incremental forming is compared with single point incremental forming for Aluminum 1060. Then the forming accuracy is measured by FARO three coordinates measuring instrument. And a new method is proposed to analyze forming accuracy quantificationally. The experimental results show that the forming accuracy of two point incremental forming is obviously higher than single point incremental forming.


Author(s):  
A. Agrawal ◽  
J. Ziegert ◽  
S. Smith ◽  
B. Woody ◽  
J. Cao

Deformation machining (DM) is a hybrid process which combines two emerging manufacturing processes, machining of thin structures and single-point incremental forming (SPIF). This hybrid process enables the creation of structures that have geometries that would be difficult or impossible to create using any either process alone. A comprehensive study of DM bending mode components has been carried out in this paper by studying their dimensional repeatability and fatigue life and comparing these with similar components fabricated with sheet metal. Experimental studies have been performed for part features created by the DM “bending mode” process, in which a thin vertical wall is machined on the part, and then incrementally bent with a single-point forming tool. The dimensional repeatability of DM components is compared with sheet metal components made by single-point incremental forming and conventional bending in a press brake [Agrawal et al., 2010, “Comparison of Dimensional Repeatability of Deformation Machined Components With Sheet Metal Components,” North American Manufacturing Research Conference, NAMRC 38, Transactions of NAMRI/SME, Vol. 38, pp. 571–576]. The results of this study indicate that the DM process is not capable of holding tolerances as tight as a standard milling process. This may be due to local variations in material properties that influence the yield strength and resulting springback. However, thin components created by DM are more repeatable than similar components created from sheet metal using SPIF, but less repeatable than components created by conventional bending of sheet metal. The second objective of the present work is to investigate whether components fabricated using the DM process can be considered for fatigue critical applications [Megahed et al., 1996, “Low-Cycle Fatigue in Rotating Cantilever Under Bending I: Theoretical Analysis,” Int. J. Fatigue, 18(6), pp. 401–412; Khalid et al., 2007, “Bending Fatigue Behavior of Hybrid Aluminum/Composite Drive Shafts,” Mater. Des., 28, pp. 329–334]. Studies were performed to experimentally compare the fatigue life of components fabricated by DM process with sheet metal components made by single-point incremental forming and conventional bending. Results of the study indicate that sheet metal SPIF components under the present loading conditions have significantly longer fatigue life of approximately 3900–5500 cycles, compared to DM and sheet metal conventionally bent components with approximately equal fatigue life of 2200–3900 cycles.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


2021 ◽  
Vol 10 ◽  
pp. 605-623
Author(s):  
Mladomir Milutinović ◽  
Robert Lendjel ◽  
Sebastian Baloš ◽  
Danka Labus Zlatanović ◽  
Luka Sevšek ◽  
...  

2021 ◽  
Vol 114 (1-2) ◽  
pp. 1-26
Author(s):  
Malik Hassan ◽  
G. Hussain ◽  
Hongyu Wei ◽  
Abdul Qadeer ◽  
Mohammed AlKahtani

CIRP Annals ◽  
2013 ◽  
Vol 62 (1) ◽  
pp. 243-246 ◽  
Author(s):  
G. Ambrogio ◽  
F. Gagliardi ◽  
S. Bruschi ◽  
L. Filice

Sign in / Sign up

Export Citation Format

Share Document