Modelling and simulation for die casting mould filling process using Cartesian cut cell approach

2015 ◽  
Vol 28 (4) ◽  
pp. 234-241 ◽  
Author(s):  
C. Bi ◽  
Z. Guo ◽  
S. Xiong
AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 905-911
Author(s):  
G. Yang ◽  
D. M. Causon ◽  
D. M. Ingram
Keyword(s):  
Cut Cell ◽  

2013 ◽  
Vol 753-755 ◽  
pp. 1318-1323 ◽  
Author(s):  
Kwang Kyu Seo ◽  
Hong Kyu Kwon

In this research, Computer Aided Engineering (CAE) simulation was performed by using the simulation software (AnyCasting) in order to optimize casting design of an automobile part (Oil Pan_7G9E) which is well known and complicated to achieve a good casting layout. The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system.


Author(s):  
Koichi Anzai ◽  
Eisuke Niyama ◽  
Shinji Sannakanishi ◽  
Isamu Takahashi

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Hanxue Cao ◽  
Chao Shen ◽  
Chengcheng Wang ◽  
Hui Xu ◽  
Juanjuan Zhu

Although numerical simulation accuracy makes progress rapidly, it is in an insufficient phase because of complicated phenomena of the filling process and difficulty of experimental verification in high pressure die casting (HPDC), especially in thin-wall complex die-castings. Therefore, in this paper, a flow visualization experiment is conducted, and the porosity at different locations is predicted under three different fast shot velocities. The differences in flow pattern between the actual filling process and the numerical simulation are compared. It shows that the flow visualization experiment can directly observe the actual and real-time filling process and could be an effective experimental verification method for the accuracy of the flow simulation model in HPDC. Moreover, significant differences start to appear in the flow pattern between the actual experiment and the Anycasting solution after the fragment or atomization formation. Finally, the fast shot velocity would determine the position at which the back flow meets the incoming flow. The junction of two streams of fluid would create more porosity than the other location. There is a transition in flow patterns due to drag crisis under high fast shot velocity around two staggered cylinders, which resulted in the porosity relationship also changing from R1 < R3 < R2 (0.88 m/s) to R1 < R2 < R3 (1.59 and 2.34 m/s).


2013 ◽  
Vol 2013 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Robert G. Ellis ◽  
Ian N. MacLeod
Keyword(s):  
Cut Cell ◽  

2012 ◽  
Vol 192-193 ◽  
pp. 293-298 ◽  
Author(s):  
Fan Zhang ◽  
Nan Nan Song ◽  
Jun Zhang ◽  
Yong Lin Kang ◽  
Qiang Zhu

According to semi-solid slurry rheological behavior, an apparent viscosity model of A356 alloy developed based on the Carreau model was established to simulate filling process of rheo-diecasting about automobile shock absorber parts and to compare with conventional liquid filling process. Numerical simulation results showed that the filling process of rheo-diecasting was smooth but difficult to splash, which reduced the tendency of the alloy oxidation and inclusion. Meanwhile, a certain percentage of the primary solid particles precipitated before filling and solidification shrinkage of semi-solid slurry were small. This benefited to reduce or eliminate shrinkage defects of the castings. Compared with conventional liquid die casting process, rheo-diecasting process had unique advantages in reducing the internal defects and improving mechanical properties of castings.


2008 ◽  
Vol 56 ◽  
pp. 170-175 ◽  
Author(s):  
Matthias Rübner ◽  
Carolin Körner ◽  
Robert F. Singer

The complete integration of piezoceramic sensor/actuator-modules into metal components using high pressure die casting is a promising approach for the fabrication of multifunctional structural elements with enhanced properties. A technique providing stabilization and protection of the module during the highly dynamic mould filling is presented. Demonstration parts are produced which are fully capable to detect vibrations. An approach to characterize this sensory functionality of the adaptronic system is presented.


Sign in / Sign up

Export Citation Format

Share Document