Numerical Simulation on the Filling Process of Rheological Die Casting and Forming Defects Analysis

2012 ◽  
Vol 192-193 ◽  
pp. 293-298 ◽  
Author(s):  
Fan Zhang ◽  
Nan Nan Song ◽  
Jun Zhang ◽  
Yong Lin Kang ◽  
Qiang Zhu

According to semi-solid slurry rheological behavior, an apparent viscosity model of A356 alloy developed based on the Carreau model was established to simulate filling process of rheo-diecasting about automobile shock absorber parts and to compare with conventional liquid filling process. Numerical simulation results showed that the filling process of rheo-diecasting was smooth but difficult to splash, which reduced the tendency of the alloy oxidation and inclusion. Meanwhile, a certain percentage of the primary solid particles precipitated before filling and solidification shrinkage of semi-solid slurry were small. This benefited to reduce or eliminate shrinkage defects of the castings. Compared with conventional liquid die casting process, rheo-diecasting process had unique advantages in reducing the internal defects and improving mechanical properties of castings.

2011 ◽  
Vol 474-476 ◽  
pp. 255-259 ◽  
Author(s):  
Ya Ping Hu ◽  
Yong Hu

Numerical simulation can be used to predict die filling, and hence to optimize the die design. In the study, the flow characteristics of liquid filling comparing with those of semi-solid filling were analyzed. The results indicated that the liquid filling turned out to be turbulent, while the semi-sold filling had laminar flow characteristics which could reduce the foundry defects such as gas cavity and oxidation mixture. The distribution of pressure reduced gradually in the filling direction during semi-solid filling process which would generate back pressure that was favorable for filling process.


2016 ◽  
Vol 256 ◽  
pp. 107-112 ◽  
Author(s):  
Wen Ying Qu ◽  
Fan Zhang ◽  
Jiao Jiao Wang ◽  
Xiao Gang Hu ◽  
Qiang Zhu

Semi-solid alloy slurries with different temperature distributions have diverse flow patterns of the slurries during die casting filling process. This different flow patterns can lead to various degrees of front separation of the slurry metal from the die cavity during die filling process. This separation can result in air entrapment, which is one of the origins for gas porosities and blisters occurred during followed heat treatment. Therefore, in this paper, the effects of slurry temperature distribution on filling patterns during die casting process were investigated. Based on partial filling experiments, positive and negative gradient temperature distribution, together with two homogeneous conditions 575°C, 579°C were compared by computer simulation. The results indicate that the positive gradient temperature condition of 357.0 slurry is more suitable for the semi-solid die casting of the connector, and 7 °C temperature gradient in slurry is appropriate for good filling.


2017 ◽  
Vol 898 ◽  
pp. 1163-1170
Author(s):  
Ya Nan Wu ◽  
Guo Jie Huang ◽  
Lei Cheng ◽  
Daniel Liang ◽  
Wei Xiao

The parametric optimization of process parameter in cold chamber die casting for an industrial component (copper motor rotors) was analyzed. The filling process was successfully simulated based on software FLOW-3D. The distribution of gas entrapment, temperature field and surface defect during the mold filling process were discussed in details. The numerical results showed that the pouring velocity had the most significant influence on the filling time, followed by the filling temperature and the die temperature. As for the filling properties, the effect of the pouring temperature was dominant. From the simulation results, the places of defect in the copper rotor were forecasted, and the reasons of the defect were well explained. Thus, the technological parameters could be improved in numerical simulation, and the simulation results would be further validated in practice.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


2020 ◽  
Vol 278 ◽  
pp. 116534
Author(s):  
Wenying Qu ◽  
Daquan Li ◽  
Fan Zhang ◽  
Min Luo ◽  
Xiaogang Hu ◽  
...  

2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


2016 ◽  
Vol 707 ◽  
pp. 144-147
Author(s):  
Ying Pio Lim ◽  
Wei Hong Yeo ◽  
A. Masita

In this project, the addition of scandium (Sc) into A356 aluminium alloy was studied for its effect on the mechanical properties after gravity die casting process. Scandium addition was administered at the weight percentages of 0.1, 0.2 and 0.3. The results obtained in this work revealed that scandium can significantly enhance the mechanical properties of A356 alloy in terms of tensile strength, hardness and charpy impact strength. In general, the addition of 0.2 wt% Sc in A356 alloy was found to be able to achieve the maximum tensile strength of 172.94MPa as compared to 136.03MPa for sample without Sc. No significant improvement in tensile strength was found when more than 0.3wt% added to the alloy. As for hardness, the sample with 0.3 wt% Sc attained the maximum Vicker’s hardness of 86.60 HV as compared to 76.48 HV for unmodified A356. Similarly, the addition of 0.3wt% Sc in A356 can achieve highest impact energy of 2.71J as compare to 1.09J for unmodified A356.


Sign in / Sign up

Export Citation Format

Share Document