The Effect of Sea Water Temperature on Corrosion Fatigue-Crack Growth in Structural Steels

1987 ◽  
Vol 26 (3) ◽  
pp. 251-257 ◽  
Author(s):  
O. Vosikovsky ◽  
W. R. Neill ◽  
D. A. Carlyle ◽  
A. Rivard
1989 ◽  
Vol 111 (1) ◽  
pp. 40-45 ◽  
Author(s):  
H. Alawi ◽  
A. Ragab ◽  
M. Shaban

Corrosion fatigue crack growth of three steels namely: AISI C1018, AISI 4340, and Stainless 17-7PH is studied in various environments. Testing medias include natural sea water, polluted sea water from an industrial site, drinking water produced from desalination process, and laboratory environments. Results obtained for the three steels are consistent in showing that polluted sea water is the most aggressive environment followed by low bicarbonate and alkalinity drinking water, then natural sea water. An attempt is made to explain this extraordinary aggressiveness of the polluted sea water and drinking water.


Author(s):  
Baotong Lu ◽  
Brian P. Somerday ◽  
Stephen J. Hudak

Laboratory testing has shown that sour brine environments can reduce the fatigue life of offshore steels by factors of 10× to 50× compared to fatigue lives measured in laboratory air. Thus, in order to ensure safe, reliable, and environmentally-friendly deepwater development, the effect of these sour service environments must be properly accounted for in riser and flowline design. However, to ensure that the environmental effect is fully captured, tests need to be conducted at cyclic loading frequencies representative of those experienced in service (typically 0.1 Hz or less), which makes corrosion-fatigue testing very time-consuming and costly. Consequently, there has been a need for predictive models that can reduce the dependence on extensive long-term testing, while at the same time enable existing data to be interpolated and/or extrapolated over a broad domain of relevant mechanical, environmental, and material variables. In response to this need, a Joint Industry Project (JIP) was organized by Southwest Research Institute® (SwRI®) with the objective of developing and validating an analytical model to predict corrosion-fatigue performance of structural steels in sour brine environments. The resulting model is based on the kinetics of hydrogen generation and transport to a fracture process zone (FPZ), where embrittlement occurs in the hydrostatic stress field ahead of the growing crack. The advantage of this kinetic model is that details of the embrittlement process, which are not presently well defined, need not be included since corrosion fatigue crack growth (CFCG) is governed by the rate-controlling process (RCP) in the elemental kinetic steps that supply hydrogen to the FPZ. A general outline of this model is provided here and its validation against independently generated experimental data is demonstrated. The validated model has been implemented in spreadsheet format for convenience as an engineering tool. Due to the fundamental concepts underpinning the model, the engineering tool is shown to be adaptable to predicting CFCG rates in steels exposed to a variety of other environments — including hydrated and dehydrated sour crude oil, moist H2S gas, sweet brine, and seawater — with and without cathodic polarization. An extension of this Phase 1 model from intermediate to lower CFCG rates is currently underway in Phase 2 of the JIP but will not be discussed in detail in the present paper. The primary objective of this paper is to introduce the engineering tool based on the Phase 1 analytical model and demonstrate its functionality in quantifying CFCG rates over wide ranges of mechanical variables (stress-intensity factor range (ΔK), load ratio (Rσ), and cyclic loading frequency), environmental variables (H2S partial pressure, pH, temperature, applied potential), and material variables (yield strength).


2014 ◽  
Vol 891-892 ◽  
pp. 248-253 ◽  
Author(s):  
Rohan Byrnes ◽  
Noel Goldsmith ◽  
Mark Knop ◽  
Stan Lynch

The characteristics of corrosion-fatigue in age-hardened Al alloys, e.g. brittle striations on cleavage-like facets, are described, with reference to two examples of component failure. Mechanisms of corrosion fatigue (and explanations for fracture-surface features) are then reviewed. New observations of corrosion-fatigue crack growth for 7050-T7451 alloy compact-tension specimens tested in aqueous environments using a constant (intermediate) ΔK value but different cycle frequencies are then described and discussed. These observations provide additional support for a hydrogen-embrittlement process involving adsorption-induced dislocation-emission from crack tips.


Sign in / Sign up

Export Citation Format

Share Document