Effect of aging on high temperature brittle intergranular fracture in austenitic stainless steels

1995 ◽  
Vol 11 (10) ◽  
pp. 998-1006 ◽  
Author(s):  
S. R. Ortner ◽  
C. A. Hippsley
Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Philip J. Maziasz ◽  
John P. Shingledecker ◽  
Neal D. Evans ◽  
Michael J. Pollard

Oak Ridge National Laboratory and Caterpillar (CAT) have recently developed a new cast austenitic stainless steel, CF8C-Plus, for a wide range of high-temperature applications, including diesel exhaust components and turbine casings. The creep-rupture life of the new CF8C-Plus is over ten times greater than that of the standard cast CF8C stainless steel, and the creep-rupture strength is about 50–70% greater. Another variant, CF8C-Plus Cu/W, has been developed with even more creep strength at 750–850°C. The creep strength of these new cast austenitic stainless steels is close to that of wrought Ni-based superalloys such as 617. CF8C-Plus steel was developed in about 1.5 years using an “engineered microstructure” alloy development approach, which produces creep resistance based on the formation of stable nanocarbides (NbC), and resistance to the formation of deleterious intermetallics (sigma, Laves) during aging or service. The first commercial trial heats (227.5 kg or 500 lb) of CF8C-Plus steel were produced in 2002, and to date, over 27,215 kg (300 tons) have been produced, including various commercial component trials, but mainly for the commercial production of the Caterpillar regeneration system (CRS). The CRS application is a burner housing for the on-highway heavy-duty diesel engines that begins the process to burn-off particulates trapped in the ceramic diesel particulate filter (DPF). The CRS/DPF technology was required to meet the new more stringent emissions regulations in January, 2007, and subjects the CRS to frequent and severe thermal cycling. To date, all CF8C-Plus steel CRS units have performed successfully. The status of testing for other commercial applications of CF8C-Plus steel is also summarized.


2007 ◽  
Vol 567-568 ◽  
pp. 33-38
Author(s):  
Jozef Janovec ◽  
Jaroslav Pokluda ◽  
Pavel Lejček

Chemical and structural changes at the grain boundaries were investigated to quantify their influence on fracture behaviour of austenitic stainless steels and model ferritic Fe-Si-P alloys. The balance between the size and the area density of intergranular particles was found to be one of the most decisive factors influencing sensitivity of the steels to intergranular fracture. The precise dependence of the energy of intergranular fracture on the phosphorus grain boundary concentration was also determined.


Sign in / Sign up

Export Citation Format

Share Document