Examination of tensile/compressive loading asymmetries in aluminium based metal matrix composites using finite element method

1995 ◽  
Vol 11 (3) ◽  
pp. 228-235 ◽  
Author(s):  
M. R. Daymond ◽  
P. J. Withers
2020 ◽  
Vol 14 (1) ◽  
pp. 39-55
Author(s):  
Xiaole Qi ◽  
Guohe Li ◽  
Qi Zhang ◽  
Fei Sun

Background:: Particle Reinforced Metal Matrix Composites (PRMMCs) are widely used because of the higher specific strength, better dimensional stability, lower thermal expansion coefficient, better wear and corrosion resistance. However, the existence of reinforcing particles makes it hard to machine. The main manifestations are as follows: severe tool wear, easy generation of debris tumors in processing, and many defects on the machined surface, etc. These seriously limit its wider application. The Finite Element Method (FEM) has been widely applied in the research of PRMMCs machining according to recent patents, which can improve the efficiency and reduce the cost of research. Therefore, it is necessary to carry out a deep research for the processing technology of PRMMCs. Methods:: In this paper, the latest research progress of finite element simulation of cutting PRMMCs was summarized. The key technologies of finite element simulation, including constitutive model, geometric model, friction model between chip and tool, fracture criterion and mesh generation, are comprehensively analyzed and summarized. The application in the specific processing methods was discussed, such as turning, milling, grinding, ultrasonic vibration grinding and drilling. The existing problems and development direction of the simulation of PRMMCs cutting are also given. Besides, a lot of patents on finite element simulation for PRMMCs machining were studied. Results:: Finite element model for the actual composition determines the accuracy of finite element simulation. Through the secondary development of finite element software, a more realistic finite element model of Particle reinforced metal matrix composites can be established. Conclusion:: Finite Element Method (FEM) provides a new approach for the study of mechanism of Particle reinforced metal matrix composites machining. Quantitative analysis and prediction of micro- details in cutting can be realized.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Sign in / Sign up

Export Citation Format

Share Document