Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden: record of hydrothermal alterations and implications for nuclear waste storage

Clay Minerals ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 495-513 ◽  
Author(s):  
S. Morad ◽  
M. Sirat ◽  
M. A. K. El-Ghali ◽  
H. Mansurbeg

AbstractHydrothermal alteration of Proterozoic granitic rocks in the Äspö underground laboratory, southestern Sweden, resulted in the formation of chlorite with large variations in textural and chemical characteristics, which reflect differences in formation temperatures, fluid composition, and reaction mechanisms. The mineral assemblage associated with chlorite, including Ca-Al silicates (prehnite, pumpellyite, epidote, and titanite), Fe-oxides, calcite, albite and K-feldspar, suggests that chloritization occurred at temperatures of between 200–350°C during various hydrothermal events primarily linked to magmatism and rock deformation. Petrographic and electron microprobe analyses revealed that chlorite replaced biotite, amphibole and magnetite, and hydrothermal chlorite phases filled fractures and vugs in the granitic rocks. While fracture-filling chlorite reduces fracture permeability, chloritization reactions in the host granite resulted in the formation of new localized microporosity that should thus be taken into consideration when evaluating the safety of the granitic basement rocks as a repository for nuclear waste. It is also important to take into account that similar alteration reactions may occur at the site of stored nuclear waste where temperatures in excess of 100°C might be encountered.

Clay Minerals ◽  
1998 ◽  
Vol 33 (2) ◽  
pp. 187-196 ◽  
Author(s):  
A. Meunier ◽  
B. Velde ◽  
L. Griffault

AbstractThe thermal stability of bentonites is of particular interest for containment barriers in nuclear waste storage facilities. The kinetics of smectite reactions have been investigated under laboratory conditions for some time. The variables of time, chemical composition and temperature have been varied in these experiments. The results of such an assessment are that there are about as many kinetic values deduced from experiments as there are experiments.Experiments using natural bentonite to study the smectite-to-illite conversion have been interpreted as a progressive transformation of montmorillonite to illite. It is highly probable that the initial reaction product is not illite but a high-charge beidellite + saponite + quartz mineral assemblage which gives, then, beidellite-mica interstratified mixed-layer minerals. These experimental reactions are noticeably different from those of diagenesis, being closer to reactions in hydrothermal systems.


2021 ◽  
Author(s):  
Ronald Joseph Turner ◽  
Pieter Bots ◽  
Alan Richardson ◽  
Paul Bingham ◽  
Alex Scrimshire ◽  
...  

(Hydroxy)apatite [Ca10(PO4)6(OH)2], has emerging potential as a cement coating material, with applications in environmental remediation, nuclear waste storage and architectural preservation. In these low temperature environments and when precipitating from...


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3709
Author(s):  
Bader Alshuraiaan ◽  
Sergey Pushkin ◽  
Anastasia Kurilova ◽  
Magdalena Mazur

Recently, issues related to the effects (benefit or harm) of processing nuclear waste and its further use as fuel have been increasingly often raised in the scientific discussion. In this regard, the research aims to investigate issues related to the assessment of the economic potential of nuclear waste use, as well as the cooperation between states in the context of the reduction of risks associated with nuclear waste storage and processing. The research methodology is based on an integrated approach, including statistical, factor analysis, and the proposed system of performance indicators for managing spent nuclear fuel use. The research was carried out on the basis of materials from Russia and the EU countries. In the course of the study, a model of cooperation between states has been developed (based on the example of technologies and methods of processing nuclear waste used in the EU and Russia) according to the nuclear waste (spent nuclear fuel) management algorithm. The model considers the risks and threats associated with ecology and safety. The developments and other results described in the study should be used in further research devoted to the use of nuclear waste as heat-producing elements.


2021 ◽  
Vol 570 ◽  
pp. 121016
Author(s):  
Akhilesh C. Joshi ◽  
Mainak Roy ◽  
Dimple P. Dutta ◽  
Raman K. Mishra ◽  
Sher Singh Meena ◽  
...  

2010 ◽  
Vol 122 (7) ◽  
pp. 1285-1288 ◽  
Author(s):  
Shuao Wang ◽  
Evgeny V. Alekseev ◽  
Jie Ling ◽  
S. Skanthakumar ◽  
L. Soderholm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document