Geochemical processes in compacted clay in contact with an acid landfill leachate: laboratory experiments and modelling results

Clay Minerals ◽  
2014 ◽  
Vol 49 (3) ◽  
pp. 443-455 ◽  
Author(s):  
I. S. De Soto ◽  
C. Ayora ◽  
J. Cuevas

AbstractClays are commonly used as liners in urban landfills. However, the reactive processes with landfill leachates, and in particular the role of accessory minerals is poorly known. The aim of this work is to evaluate the diffusion of a synthetic urban landfill leachate through compacted natural smectite-illitic clays containing carbonates and sulfates and to predict the functioning of the clay liner for different minor mineral proportions. The leachate, characterized by acidic pH conditions and high organic matter content, is a typical aqueous solution formed in the acetogenic phase of organic matter degradation in urban landfill areas. Medium-scale (11 cm) laboratory diffusion tests were performed over 77 days. Chloride diffusion coefficients, porosity changes, cation exchange constants and the sulfate reduction rate were quantitatively assessed by means of reactive transport modelling. The exchange capacity of the clays is responsible for NH4+retention. However, the presence or absence of gypsum in the initial clay rock controls the functioning of the liner. Gypsum dissolution ensures a high sulfate concentration in the porewater and enhances the acetate consumption via sulfate reduction. Gypsum dissolution and the concomitant calcite precipitation do not significantly alter the porosity of the clay rock.

2013 ◽  
Vol 10 (2) ◽  
pp. 1193-1207 ◽  
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years. Lab incubations of sediment and overlying water were conducted at 4 temperatures (4 °C, 15 °C, 25 °C, and 35 °C) for 48 h. Results indicated: (1) warming significantly increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions, (2) warming consistently increased SRP fluxes from sediments to overlying water across land use, (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at some urban sites likely due to sulfate reduction, and (4) nitrate fluxes showed an increasing trend with temperature at some forest and urban sites but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase mean sediment fluxes of SRP, DOC and nitrate-N across streams by 0.27–1.37 g m−2 yr−1, 0.03–0.14 kg m−2 yr−1, and 0.001–0.06 kg m−2 yr−1. Understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting shifts in carbon and nutrient loads in response to interactive impacts of climate and land use change.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 599-603 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
Edja. Kofi. Bosque-Hamilton

The interactions between filamentous sulfur bacteria (FSB), sulfate reducing bacteria (SRB) and poly-P accumulating bacteria (PAB) in the activated sludge of a municipal plant operated under anaerobic-oxic conditions were examined in batch experiments using return sludge (RAS) and settled sewage. Phosphate release and sulfate reduction occurred simultaneously under anaerobic conditions. SRB were more sensitive to temperature changes than PAB. SRB played an important role in the decomposition of propionate to acetate. When the sulfate reduction rates were high, there was a tendency for the maximum release of phosphate also to be high. This was explained by the fact that PAB utilized the acetate produced by SRB. Sulfur oxidizing bacteria were sensitive to temperature change. When the sulfate reduction rate was high, the sulfide oxidizing rate was also high and filamentous bulking occurred. The results showed that sulfate reduction was a cause of filamentous bulking due to Type 021N that could utilize reduced sulfur.


2001 ◽  
Vol 67 (2) ◽  
pp. 888-894 ◽  
Author(s):  
Jan Detmers ◽  
Volker Brüchert ◽  
Kirsten S. Habicht ◽  
Jan Kuever

ABSTRACT Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.0 to 42.0‰. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation. Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect isotope fractionation. Previous models that explained fractionation only in terms of sulfate reduction rates appear to be oversimplified. The species-specific physiology of each sulfate reducer thus needs to be taken into account to understand the regulation of sulfur isotope fractionation during dissimilatory sulfate reduction.


2004 ◽  
Vol 70 (3) ◽  
pp. 1608-1616 ◽  
Author(s):  
Ketil Bernt S�rensen ◽  
Donald E. Canfield ◽  
Aharon Oren

ABSTRACT The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120‰, and sulfate reduction was strongly inhibited at an in situ salinity of 215‰. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180‰ or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120‰.


2006 ◽  
Vol 51 (4) ◽  
pp. 535-542 ◽  
Author(s):  
Steve H. Harris ◽  
Jonathan D. Istok ◽  
Joseph M. Suflita

2012 ◽  
Vol 9 (8) ◽  
pp. 11293-11330
Author(s):  
S.-W. Duan ◽  
S. S. Kaushal

Abstract. Rising water temperatures due to climate and land-use change can accelerate biogeochemical fluxes from sediments to streams. We investigated impacts of increased streamwater temperatures on sediment fluxes of dissolved organic carbon (DOC), nitrate, soluble reactive phosphorus (SRP) and sulfate. Experiments were conducted at 8 long-term monitoring sites across land use (forest, agricultural, suburban, and urban) at the Baltimore Ecosystem Study Long-Term Ecological Research (LTER) site in the Chesapeake Bay watershed. Over 20 yr of routine water temperature data showed substantial variation across seasons and years, and lab incubations were conducted at 4 temperatures (4 °C, 15 °C, 25 °C and 35 °C) for 48 h. Results indicated: (1) warming consistently increased sediment DOC fluxes to overlying water across land use but decreased DOC quality via increases in the humic-like to protein-like fractions (2) warming consistently increased SRP fluxes from sediments to overlying water across land use (3) warming increased sulfate fluxes from sediments to overlying water at rural/suburban sites but decreased sulfate fluxes at urban sites likely due to sulfate reduction (4) nitrate fluxes showed an increasing trend with temperature but with larger variability than SRP. Sediment fluxes of nitrate, SRP and sulfate were strongly related to watershed urbanization and organic matter content. Using relationships of sediment fluxes with temperature, we estimate a 5 °C warming would increase the annual sediment release by 1.0–3.9 times. In addition to hydrologic variability, understanding warming impacts on coupled biogeochemical cycles in streams (e.g., organic matter mineralization, P sorption, nitrification, denitrification, and sulfate reduction) is critical for forecasting changes in carbon and nutrient exports across watershed land use.


1994 ◽  
Vol 30 (11) ◽  
pp. 201-210 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori

Effects of anoxic-oxic conditions on the growth of sulfate reduction, poly-P accumulation and filamentous sulfur bacteria were examined in the laboratory scale sequential batch reactors. In the anoxic-oxic conditions, denitrification bacteria are dominant. The growth of sulfate reducing bacteria and poly-P accumulating bacteria was suppressed. The number of sulfate reducing bacteria in the activated sludge was below 104 MPN/g MLSS, and the sulfate reduction rate was very low. Filamentous bulking was also suppressed. On the other hand, when nitrate was removed from the artificial wastewater, sulfate reducing bacteria could grow predominantly in the anaerobic conditions. The number of sulfate reducing bacteria was about 106∼107 MPN/g MLSS and the sulfate reduction rate increased (0.17 ∼ 0.21 g SO4/g MLSS·hr). Filamentous bacteria Type 021N increased over 103 cm/mg MLSS. Sodium molybdate was added to the artificial wastewater in order to prevent sulfate reduction. When the concentration of sodium molybdate increased to 980 mg/L, the number of sulfate reducing bacteria decreased to 103 ∼ 104 MPN/g MLSS and the sulfate reduction rate decreased. Filamentous bulking was completely suppressed in these conditions. These results show that sulfate reduction is a main trigger of the filamentous bulking due to Type 021N that can utilize reduced sulfur for an energy source.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 317-324 ◽  
Author(s):  
Gong-Ming Zhou ◽  
Herbert H. P. Fang

This study was conducted to investigate the methanogenic and sulfidogenic activities of biomass in a UASB reactor treating wastewater containing benzoate (680 mg l−1) and sulfate (increased from 1080 to 2680 mg l−1) at 37°C and 12 hours of hydraulic retention. Results showed that after 120 days of acclimation, sludge consistently removed 99.5% of benzoate regardless of increased sulfate concentrations. Sulfidogenesis gradually out-competed methanogenesis during the acclimation phase, as indicated by the increase of sulfate-reducing efficiency (up to 99%) accompanied by the decrease of methane production. Overall sulfate removal efficiency was limited after the reactor had reached its maximum sulfate reduction rate of 2.1 g S (l d−1). Further increasing sulfate concentration from 1080 mg l−1 to 2680 mg l−1 lowered the sulfate-reducing efficiency from 85% to 39%. Flow of available electrons toward sulfidogenesis increased with the decrease of benzoate concentration, and was only slightly affected by the sulfate concentration or the benzoate/SO42−-S ratio.


Sign in / Sign up

Export Citation Format

Share Document