Paragenesis of the metasomatic actinolite-bearing rocks from the Khetri copper belt, Rajasthan, India

Author(s):  
S. P. Das Gupta

SummaryIn the south-eastern part of the Khetri copper belt, actinolite occurs in association with alteration assemblages resulting from the Fe-Mg metasomatism that accompanied sulphide mineralization, and more commonly with albite-bearing rocks formed by albitization of quartzites and schists near granitic rocks. Within the latter occur many coarse, massive, and unoriented aggregates of actinolite crystals, individuals being commonly more than 10 cm long. Locally fluorite-bearing veins oecur within granitic and albite-quartz rocks. The actinolite is pleochroic from pale pink to green; γ: [001] = 26°; γ = 1·642 ± 0·003; 2Vα = 80°. The composition of the analysed actinolite closely compares with those published in the literature excepting in (OH), which is low. The mineral assemblages, formed by metasomatic replacement of pre-existing rocks, are equivalent to those of albite-epidote-amphibolite facies. The metasomatic fluid was apparently rich in Ca, F (indicated by fluorite), and oxygen (indicated by magnetite, ilmenite, and hematite).

Author(s):  
Jie Dong ◽  
Chunjing Wei

Abstract The South Altyn ultrahigh-pressure (UHP) metamorphic belt is claimed to host the deepest subducted continental crust based on the discovery of former stishovite, and thus can provide unique insights into the tectonic evolution from deep continental subduction and exhumation to arc–backarc extension. In this paper, we present detailed studies of petrography, mineral chemistry, phase equilibria modelling and zircon U-Pb dating for three representative samples involving garnet amphibolite (A1531 & A1533) and associated garnet-biotite gneiss (A1534) from the UHP belt. Three phases of metamorphism are inferred for the rocks. The first phase high pressure (HP)–UHP-type eclogite facies is represented by the mineral assemblages of garnet and phengite inclusions in zircon and garnet cores with the high grossular (XGrs = 0.33–0.34). The Si contents of 3.40–3.53 and 3.24–3.25 p.f.u. in phengite inclusions yield pressure conditions of >1.7–2.3 GPa for A1533 and 2.5–2.55 GPa for A1534 at a fixed temperature of 770 °C. The second phase medium-pressure (MP)-type overprinting of garnet amphibolite facies shows P–T conditions of 0.8–1.2 GPa/750–785 °C based on the stability fields of corresponding mineral assemblages, the measured isopleths of Ti contents in biotite and amphibole cores, and XGrs in garnet. The third phase low-pressure (LP) type overprinting includes early-stage heating to peak granulite facies followed by cooling towards a late-stage amphibolite facies. The peak granulite facies is represented by the high Ti amphibole mantle, high Zr titanite and the intergrowths of clinopyroxene + ilmenite in A1533 & A1531, with P–T conditions of 800–875 °C/0.80–0.95 GPa. The late-stage is defined by the solidus assemblages, giving P–T conditions of 0.5–0.7 GPa/720–805 °C. U-Pb geochronology on metamorphic zircons from A1533 and A1534 gives three ages of c. 500 Ma, c. 482 Ma and c. 460 Ma. They are interpreted to represent the HP–UHP, MP and LP types of metamorphism respectively, based on cathodoluminescence images, mineral inclusions and trace element patterns. Combining the regional geology and metamorphic evolution from the Altyn Orogen, a tectonic model is inferred, including the following tectonic scenarios. The small Altyn Microcontinent was subducted to great mantle depths with dragging of the surrounding vast oceanic lithosphere to undergo the HP–UHP eclogite facies metamorphism during the early subduction stage (c. 500 Ma) of the Proto-Tethys Ocean. Then, the subducted slabs were exhumed to a thickened crust region to be overprinted by the MP-type assemblages at c. 482 Ma. Finally, an arc–backarc extension was operated within the thickened crust region due to the retreat of subduction zones. It caused evident heating and the LP-type metamorphic overprinting at c. 460 Ma, with a fairly long interval of 30–40 Myr after the HP–UHP metamorphism, distinct from the short interval of <5–10 Myr in the Bohemian Massif.


1988 ◽  
Vol 140 ◽  
pp. 49-54
Author(s):  
M Marker ◽  
A.A Garde

The authors carried out geological mapping in August 1987 at the south-eastern boundary of the Finnefjeld gneiss complex around 65°N. The field work was supported by the GGU cutter 'J. F. Johnstrup'. Based on reconnaissance mapping in the 1950s Berthelsen (1951, 1957,1962) divided the Archaean gneiss terrain in the southem Sukkertoppen district between Godthåbsfjord and Søndre Isortoq into three major tectonic units: the Nordland, the Finnefjeld and the Alangua complexes. This division was also followed by Noe-Nygaard & Ramberg (1961).


1974 ◽  
Vol 65 ◽  
pp. 37-39
Author(s):  
J.N Diggens ◽  
C Talbot

The area discussed here is situated 8 km north of the Sukkertoppen Iskappe and 10 km east of Søndre Strømfjord at 66°27'N, 51°50'W. The work was undertaken during August as part of the programme led by Dr. J. Watterson (see this report). The outcrop of supracrustal metavolcanic rocks is less than 15 km2 in extent. They consist of greenschist to low amphibolite facies schists disposed in an eastwest trending synformal basin and overlying Archaean gneisses modified by Nagssugtoquidian shearing. The south-eastern margin of the Nagssugtoqidian mobile belt is 15 km east of this area (Bridgwater et al., 1973).


1971 ◽  
Vol 35 ◽  
pp. 49-52
Author(s):  
O Larsen

In the lvigtut region the Ketilidian supracrustal rocks are exposed mainly on Arsuk ø and in a narrow belt stretching along the margin of the Inland lee (Berthelsen & Noe-Nygaard, 1965; Windley et al., 1966). This belt narrows to less than 1 km along the north side of Qôrnoq fjord. The metamorphic grade of the supracrustal rocks increases southwards from lower greenschist facies in northern Grænseland and on Midternæs to epidote amphibolite facies around Qôrnoq fjord and Kiniilik.


Sign in / Sign up

Export Citation Format

Share Document