Infrared spectroscopic analysis of the olivenite-adamite series, and of phosphate substitution in olivenite

1983 ◽  
Vol 47 (342) ◽  
pp. 51-57 ◽  
Author(s):  
R. S. W. Braithwaite

AbstractInfrared spectroscopy affords a rapid and easy method of estimating the position of a mineral in the olivenite-adamite solid solution series, and of estimating the amount of phosphate substitution in olivenites. Toman's discovery of the monoclinic symmetry of olivenites with up to approximately 20 atom % Zn/(Cu + Zn) has raised a problem in nomenclature. It is suggested that the definition of ‘cuproadamite’ be extended to cover all orthorhombic members of the series containing appreciable Cu. Studies of deuterated materials have helped to solve some of the absorption band assignments for olivenite-adamite, libethenite and related minerals.

2002 ◽  
Vol 165 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Olivier Cousin ◽  
Marielle Huve ◽  
Pascal Roussel ◽  
Olivier Perez ◽  
Hugo Steinfink

1995 ◽  
Vol 10 (3) ◽  
pp. 189-194 ◽  
Author(s):  
C. L. Lengauer ◽  
G. Giester

The kieserite-type solid-solution series of synthetic (Cu,Mg)SO4·H2O was investigated by TG-analysis and X-ray powder diffraction using the Rietveld method. Representatives with Cu≥20 mol% are triclinic distorted () analogous to the poitevinite (Cu,Fe)SO4·H2O compounds. Cation site ordering with preference of Cu for the more distorted M1 site was additionally proven by the structure refinement.


ChemInform ◽  
2013 ◽  
Vol 44 (50) ◽  
pp. no-no
Author(s):  
Thorsten Schroeder ◽  
Stefan Schwarzmueller ◽  
Christian Stiewe ◽  
Johannes de Boor ◽  
Markus Hoelzel ◽  
...  

2014 ◽  
Vol 62 ◽  
pp. 1-15
Author(s):  
Jørn G. Rønsbo ◽  
Henning Sørensen ◽  
Encarnacion Roda-Robles ◽  
François Fontan ◽  
Pierre Monchoux

In the Ilímaussaq alkaline complex, minerals from the rinkite–nacareniobsite-(Ce) solid solution series have been found in pulaskite pegmatite, sodalite foyaite, naujaite and naujaite pegmatite from the roof sequence, and in marginal pegmatite, kakortokite and lujavrite from the floor sequence. The electron microprobe analyses embrace almost the full extension of the solid solution series and confirm its continuity. The solid solution series shows similar compositional variations in the roof and floor sequences: Rinkite members of the series are found in the less evolved rocks in the two sequences, whereas nacareniobsite-Ce members occur in the most evolved rocks and pegmatites in the two sequences. The REE (+Y) content varies from 0.83 atoms per formula unit (apfu) in rinkite from pulaskite pegmatite to 1.31 apfu in nacareniobsite-(Ce) from naujaite pegmatite. The main substitution mechanisms in the solid solution series investigated in this work are 2Ca2+ = Na+ + REE3+ and Ti4+ + Ca2+ = Nb5+ + Na+. The increased contents of Nb5+ and REE3+ are only to a minor degree compensated through the F1– = O2– substitution. The chondrite normalised REE patterns of the minerals develop in a similar way in the two sequences, showing relative La-enrichment and Y-depletion from the less to the most evolved rocks. Hainite has not previously been found in the Ilímaussaq complex. It was here identified in a pulaskite pegmatite sample by a combination of X-ray diffraction giving the unit cell dimensions a = 9.5923(7) Å, b = 7.3505(5) Å, c = 5.7023(4) Å, α = 89.958(2)°, β = 100.260(1)°, γ = 101.100(2)°, and X-ray powder pattern and electron microprobe data giving the empirical formula (Ca1.62 Zr0.16Y 0.22) (Na0.87Ca1.11) (Ca 1.65 REE0.35)Na(Ti0.81Nb0.09Fe0.08 Zr0.02)(Si2O7)2O0.99F2.96. Based on published and the present data it is documented that minerals from the hainite-götzenite solid solution series show a compositional variation between the ideal end members (Y,REE,Zr)Na2Ca4Ti(Si2O7)2OF3 and NaCa6Ti(Si2O7)2OF3.


Sign in / Sign up

Export Citation Format

Share Document