Slab Melt Metasomatism Beneath the North Andean Volcanic Zone? Insight from Antisana Volcano Rocks (Ecuador)

1998 ◽  
Vol 62A (1) ◽  
pp. 209-210
Author(s):  
E. Bourdon
Keyword(s):  
2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
Martha Savage ◽  
Colin Wilson ◽  
S Bannister

© 2019. American Geophysical Union. All Rights Reserved. We use crustal seismic anisotropy measurements in the North Island, New Zealand, to examine structures and stress within the Taupō Volcanic Zone, the Taranaki Volcanic Lineament, the subducting Hikurangi slab, and the Hikurangi forearc. Results in the Taranaki region are consistent with NW-SE oriented extension yet suggest that the Taranaki volcanic lineament may be controlled by a deep-rooted, inherited crustal structure. In the central Taupō Volcanic Zone anisotropy fast orientations are predominantly controlled by continental rifting. However at Taupō and Okataina volcanoes, fast orientations are highly variable and radial to the calderas suggesting the influence of magma reservoirs in the seismogenic crust (≤15 km depth). The subducting Hikurangi slab has a predominant trench-parallel fast orientation, reflecting the pervasive presence of plate-bending faults, yet changing orientations at depths ≥120 km beneath the central North Island may be relics from previous subduction configurations. Finally, results from the southern Hikurangi forearc show that the orientation of stresses there is consistent with those in the underlying subducting slab. In contrast, the northern Hikurangi forearc is pervasively fractured and is undergoing E-W compression, oblique to the stress field in the subducting slab. The north-south variation in fore-arc stress is likely related to differing subduction-interface coupling. Across the varying tectonic regimes of the North Island our study highlights that large-scale tectonic forces tend to dictate the orientation of stress and structures within the crust, although more localized features (plate coupling, magma reservoirs, and inherited crustal structures) can strongly influence surface magmatism and the crustal stress field.


2019 ◽  
Vol 509 ◽  
pp. 1-8 ◽  
Author(s):  
A. Tibaldi ◽  
F.L. Bonali ◽  
F. Pasquaré Mariotto ◽  
E. Russo ◽  
L.M. Ranieri Tenti
Keyword(s):  

2020 ◽  
Author(s):  
Elisabetta Panza ◽  
Joël Ruch ◽  
François Martin

<p>Volcano-tectonic events in extensional environments release over days or weeks tectonic strain deficit accumulated over several decades or hundreds of years.</p><p>Thanks to its position, on top of both an extensional plate boundary and a mantle plume, several volcano-tectonic events occur in Iceland, and they have relatively accurately reported since the first settlements in ~ 870 AD. The eruptions and graben formation observed during these events are related to magma transport in the crust, which also causes the reactivation of pre-existing structures.</p><p>However, the Earth’s upper crust is classically modelled as homogeneous and fully elastic and not as a pre-fractured medium. This study aims to analyse the role of pre-existing crustal structures on the propagation of magma in extensional environments.</p><p>The 13 main Icelandic volcano-tectonic events, mostly concentrated in the North, East, and West Volcanic Zones, show a return period in the order of 200 years on average. The suggested cyclic nature of strain deficit loading and subsequent release is consistent with the stepwise nature of strain release at divergent plate boundaries: the crustal opening associated with dike emplacement during volcano-tectonic events is of the same order of magnitude of the strain deficit accumulated since the previous event in the same area.</p><p>On this basis, we identified structurally relevant and logistically accessible fieldwork areas in the North Volcanic Zone to perform detailed structural mapping based on UAV-drone imagery. In August 2019 we carried out a UAV survey in Fjallagjá, a graben ~15-20 m deep and ~1 km wide that extends parallel to Sveinagjá graben for ~18 km, in the Askja volcanic system. During the volcano-tectonic event in 1875 in Askja volcanic system, Sveinagjá graben was activated and it subsided 3 to 6 m.</p><p>The UAV is a fixed-wing with a ground resolution down to 1 cm·px<sup>-1</sup> (flying at 100 m above ground), with an on-board PPK antenna. We installed a GNSS base, wich, in combination with the PPK correction, allows a centimetre-accuracy of the georeferencing of the drone images, with no need for aerial targets as GCPs. With this setup we managed to perform 21 flights, covering an area of ~15 km<sup>2</sup>.</p><p>The processing of the drone images resulted in DEMs and orthorectified mosaics of the fieldwork area, allowing to perform a detailed morphological and structural analysis, looking at fracures, topography effects, and potential kinematic indicators. Specific attention is paid to obliquity between sets of structures. The aim is to reconstruct the paleostress history of this area of the plate boundary.</p><p>The use of UAV high-resolution mapping paves the way to an efficient broadening of the fieldwork area and makes available a near-field structural analysis dataset much wider than previously possible.</p>


2020 ◽  
Author(s):  
Alessandro Tibaldi ◽  
Elena Russo ◽  
Luca Fallati

<p>We analysed at very high detail the surface deformation along a volcanotectonic structure in the Krafla Fissure Swarm, located in the North Iceland Rift. The structure affects the Pleistocene Hituholar volcano and 12 ka old lava flows. The work has been carried out through the Structure from Motion technique (SfM) applied to UAV surveys, integrated with a lithostratigraphic and structural field survey. The resulting Orthomosaic and Digital Surface Model (DSM) have a resolution of 2.6 and 10 cm, respectively. The zone of deformation is characterised by topographic bulging, parallel extension fractures, and narrow grabens with locally floor uplift, which can be explained as the effect of shallow propagation of a dyke northward from the Krafla magma chamber. In fact, the study area has been interested by northward dyke propagation from the central Krafla volcano during several rifting events, among which the recentmost occurred in 1975-1984 (Krafla fire). The analysis of the very wide area covered by our UAV surveys indicates that changes in the pattern of surface deformation occur in correspondence of contacts between deposits with different rheological properties: the transition from very stiff lavas to soft hyaloclastites produces a change from extension fracturing to normal faulting. Moreover, we detected a series of extension fractures with NE-SW strike and left-lateral slip component, and NNW-SSE strike and right-lateral component, which are rotated clockwise and anticlockwise respect to the main NNE-SSW graben trend, and extend outward to the sides of the main deformation zone up to 17 m. We interpret these structures as originated in front of the dyke tip during its propagation and being successively bypassed by the dyke advancement. In case of an active volcanic zone, the comprehension of the surface deformation and of the significance of strike-slip faulting occurrence can help to determine how and where magma is propagating. Thus, these evidences may help to decipher geophysical data and surface structural data during volcano monitoring.</p>


1927 ◽  
Vol 55 (2) ◽  
pp. 489-505 ◽  
Author(s):  
Robert Campbell ◽  
James W. Lunn

The shallow synclinal fold termed the Dalmahoy syncline is situated between the north-western flank of the Pentland Hills and the Murieston fault, the most southerly of the five important easterly and north-easterly dislocations which traverse the oil-shale field of West Lothian. The core of the syncline is occupied by rocks belonging to the lower division of the Oil-Shale Group of the Lower Carboniferous. Intervening between these and the Cement-stone Group is a volcanic zone, probably on the same horizon as the Arthur's Seat lavas, consisting mainly of mugearites and basalts which show their greatest development in the Corston Hill district. Along the whole of the southern limb of the syncline is an extensive spread of Upper Old Red Sandstone, but this formation is almost entirely cut out in the northern limb by the Murieston fault, appearing only in the core of a small anticline near Selms.


Author(s):  
O.M. Topchieva ◽  
◽  
V.A. Petrovsky ◽  
M.A. Nazarova ◽  
V.M. Chubarov ◽  
...  
Keyword(s):  

Radiocarbon ◽  
2001 ◽  
Vol 43 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Nancy R Beavan-Athfield ◽  
Bruce G McFadgen ◽  
Rodger J Sparks

Diet can play a significant role in anomalous radiocarbon ages derived from bone and other tissues when the food web incorporates depleted 14C reservoirs, such as the marine environment. Dietary effects from a post-bomb carbon variation have also been found in modern invertebrates and populations of Rattus exulans (Beavan and Sparks 1998). We now present the effect on absolute percent modern (pMC) and the conventional radiocarbon age (CRA) of a modern aquatic/terrestrial food web in a volcanic zone of the North Island, New Zealand. At Lake Taupo, geothermal venting transfers 14C depleted carbon to lake waters, which aquatic plants fix into the food chain; depleted 14C is shown to then pass on to shellfish, waterfowl, and Norway rat (Rattus norvegicus). The geothermally induced 14C variations from modern atmospheric pMC and CRA can increase apparent 14C ages by >2000 years.


Geophysics ◽  
1981 ◽  
Vol 46 (10) ◽  
pp. 1467-1468 ◽  
Author(s):  
Russell Robinson

A twenty day microearthquake survey of the Ngawha geothermal field, New Zealand, was undertaken in order to establish the level of preproduction seismicity and to test the usefulness of such surveys in geothermal exploration. The Ngawha geothermal field, in the far northwest of the North Island (Northland) is associated with a region of Quaternary basaltic volcanism. It is not a part of the much more extensive Taupo volcanic zone in the central North Island, site of the well‐known Wairakei geothermal field, among others. Although surface thermal activity at Ngawha is limited to a few relatively small hot springs, resistivity surveys have outlined a [Formula: see text] area of hot water at the 1-km depth level (Macdonald et al. , 1977). Test bores to that depth have encountered temperatures of up to 250 °C within Mesozoic graywacke. Overlying the graywacke is about 500 m of Cenozoic claystone and siltstone which forms an impermeable cap.


Sign in / Sign up

Export Citation Format

Share Document