Dalnegroite, Tl5–xPb2x(As,Sb)2l–xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland

2009 ◽  
Vol 73 (6) ◽  
pp. 1027-1032 ◽  
Author(s):  
F. Nestola ◽  
A. Guastoni ◽  
L. Bindi ◽  
L. Secco

AbstractDalnegroite, ideally Tl4Pb2(As12Sb8)Σ20S34, is a new mineral from Lengenbach, Binntal, Switzerland. It occurs as anhedral to subhedral grains up to 200 μm across, closely associated with realgar, pyrite, Sb-rich seligmanite in a gangue of dolomite. Dalnegroite is opaque with a submetallic lustre and shows a brownish-red streak. It is brittle; the Vickers hardness (VHN25) is 87 kg mm-2(range: 69—101) (Mohs hardness ∼3—3½). In reflected light, dalnegroite is highly bireflectant and weakly pleochroic, from white to a slightly greenish-grey. In cross-polarized light, it is highly anisotropic with bluish to green rotation tints and red internal reflections.According to chemical and X-ray diffraction data, dalnegroite appears to be isotypic with chabournéite, Tl5-xPb2x(Sb,As)21-xS34. It is triclinic, probable space groupP1, witha= 16.217(7) Å,b= 42.544(9) Å,c= 8.557(4) Å, α = 95.72(4)°, β = 90.25(4)°, γ = 96.78(4)°,V= 5832(4) Å3,Z= 4.The nine strongest powder-diffraction lines [d(Å) (I/I0) (hkl)] are: 3.927 (100) (10 0); 3.775 (45) (22); 3.685 (45) (60); 3.620 (50) (440); 3.124 (50) (2); 2.929 (60) (42); 2.850 (70) (42); 2.579 (45) (02); 2.097 (60) (024). The mean of 11 electron microprobe analyses gave elemental concentrations as follows: Pb 10.09(1) wt.%, Tl 20.36(1), Sb 23.95(1), As 21.33(8), S 26.16(8), totalling 101.95 wt.%, corresponding to Tl4.15Pb2.03(As11.86Sb8.20)S34. The new mineral is named for Alberto Dal Negro, Professor in Mineralogy and Crystallography at the University of Padova since 1976.

2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


1972 ◽  
Vol 38 (299) ◽  
pp. 794-800 ◽  
Author(s):  
L. J. Cabri ◽  
D. C. Harris

SummaryInsizwaite from Waterfall Gorge, Insizwa, is a new mineral with the composition Pt1·00Bi1·35Sb0·57. The name is for the locality and is to be applied to the end member PtBi2. The analysed material is an antimonian variety. The mineral is cubic, the unit-cell for the antimonian variety has a 6·625 (2) Å, probable space group Pa3, calc. D 12·8 g/cm3. The strongest lines on the X-ray diffraction powder pattern are: 2·96 (8) 210; 2·70 (8) 211; 2·34 (5) 220; 1·99 (10 311; 1·774 (7) 321; 1·433 (5) 421; 1·277 (6) 511, 333; 1·171 (6) 440; and 0·862 (7) 731. Under reflected light the mineral is white (in air and in oil) and is isotropic. Reflectance measurements at 470, 546, 589, and 650 nm gave 61·1, 60·0, 60·6, and 61·7 %. Micro-indentation hardness values range from 488 to 540 (av. 519) kg/mm2 with a 25 g load.New data are presented for niggliite from the type locality and for synthetic PtSn.


2020 ◽  
Vol 58 (5) ◽  
pp. 587-596
Author(s):  
Anatoly V. Kasatkin ◽  
Emil Makovicky ◽  
Jakub Plášil ◽  
Radek Škoda ◽  
Atali A. Agakhanov ◽  
...  

ABSTRACT The new sulfosalt chukotkaite, ideally AgPb7Sb5S15, was discovered in the valley of the Levyi Vulvyveem river, Amguema river basin, Iultin District, Eastern Chukotka, Chukotka Autonomous Okrug, North-Eastern region, Russia. The new mineral forms anhedral grains up to 0.4 × 0.5 mm intergrown with pyrrhotite, sphalerite, galena, stannite, quartz, and Mn-Fe-bearing clinochlore. Other associated minerals include arsenopyrite, benavidesite, diaphorite, jamesonite, owyheeite, uchucchacuaite, cassiterite, and fluorapatite. Chukotkaite is lead-grey and has metallic luster and a grey streak. It is brittle and has an uneven fracture. Neither cleavage nor parting were observed. Mohs hardness is 2–2½. Dcalc. = 6.255 g/cm3. In reflected light, chukotkaite is white, moderately anisotropic with rotation tints varying from bluish-grey to brownish-grey. No pleochroism or internal reflections are observed. The chemical composition of chukotkaite is (wt.%; electron microprobe) Ag 3.83, Pb 53.67, Sb 24.30, S 18.46, total 100.26. The empirical formula based on the sum of all atoms = 28 pfu is Ag0.93Pb6.78Sb5.22S15.07. Chukotkaite is monoclinic, space group P21/c, a = 4.0575(3), b = 35.9502(11), c = 19.2215(19) Å, β = 90.525(8)°, V = 2803.7(4) Å3, and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.52 (100) (045), 3.38 (50) (055), 3.13 (50) (065), , 2.82 (25) (066), 1.91 (50) (0 1 10). The crystal structure of chukotkaite was refined from single-crystal X-ray diffraction data to R = 0.0712 for 3307 observed reflections with Iobs > 3σ(I). Chukotkaite belongs to the group of rod-based sulfosalts. The new mineral is named after the region of its type locality: Chukotka Autonomous Okrug, North-Eastern Region, Russia.


1998 ◽  
Vol 62 (2) ◽  
pp. 257-264 ◽  
Author(s):  
W. H. Paar ◽  
A. C. Roberts ◽  
A. J. Criddle ◽  
D. Topa

AbstractChrisstanleyite, Ag2Pd3Se4, is a new mineral from gold-bearing carbonate veins in Middle Devonian limestones at Hope's Nose, Torquay, Devon, England. It is associated with palladian and argentian gold, fischesserite, clausthalite, eucairite, tiemannite, umangite, a Pd arsenide-antimonide (possibly mertieite II), cerussite, calcite and bromian chlorargyrite. Also present in the assemblage is a phase similar to oosterboschite, and two unknown minerals with the compositions, PdSe2 and HgPd2Se3. Chrisstanleyite occurs as composite grains of anhedral crystals ranging from a few µm to several hundred µm in size. It is opaque, has a metallic lustre and a black streak, VHN100 ranges from 371–421, mean 395 kp/mm2 (15 indentations), roughly approximating to a Mohs hardness of 5. Dcalc = 8.308 g/cm3 for the ideal formula with Z = 2. In plane-polarised reflected light, the mineral is very slightly pleochroic from very light buff to slightly grey-green buff; is weakly bireflectant and has no internal reflections. Bireflectance is weak to moderate (higher in oil). Anisotropy is moderate and rotation tints vary from rose-brown to grey-green to pale bluish grey to dark steel-blue. Polysynthetic twinning is characteristic of the mineral. Reflectance spectra and colour values are tabulated. Very little variation was noted in eleven electron-microprobe analyses on five grains, the mean is: Ag 25.3, Cu 0.17, Pd 37.5, Se 36.4, total 99.37 wt.%. The empirical formula (on the basis of ∑M + Se = 9) is (Ag2.01Cu0.02)∑2.03 Pd3.02Se3.95, ideally Ag2Pd3Se4. Chrisstanleyite is monoclinic, a 6.350(6), b 10.387(4), c 5.683(3) Å β 114.90(5)°, space group P21/m (11) or P21(4). The five strongest X-ray powder-diffraction lines [d in Å (I)(hkl)] are: 2.742 (100) (–121), 2.688 (80) (–221), 2.367 (50) (140), 1.956 (100) (–321,150) and 1.829 (30) (–321, 042). The name is in honour of Dr Chris J. Stanley of The Natural History Museum in London. The mineral and its name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.


2020 ◽  
Vol 84 (3) ◽  
pp. 444-454 ◽  
Author(s):  
Anatoly V. Kasatkin ◽  
Sergey N. Britvin ◽  
Igor S. Peretyazhko ◽  
Nikita V. Chukanov ◽  
Radek Škoda ◽  
...  

AbstractOxybismutomicrolite, ideally [(Bi3+,#)2]Σ4+Ta2O6O, where # = subordinate substituents, such as Na+, Ca2+ and vacancy (□), is a microlite-group, pyrochlore-supergroup mineral discovered at the Solnechnaya (‘Sunny’) pegmatite vein, Malkhan pegmatite field, Zabaykalskiy Kray, Central Transbaikalia, Russia. It forms rough octahedral crystals up to 1 mm across and equant grains up to 2 mm across embedded in an albite–lepidolite–elbaite complex. Other associated minerals are Bi-rich fluornatromicrolite, bismutotantalite and stibiotantalite. The new mineral is black, with resinous lustre; the streak is greyish white. It is non-fluorescent under ultraviolet light. Oxybismutomicrolite is brittle, with Mohs’ hardness of ~5. Cleavage is not observed, fracture is uneven. Dmeas. = 6.98(2) g/cm3 and Dcalc. = 7.056 g/cm3. The mineral is optically isotropic. The mean refractive index calculated from the Gladstone–Dale equation is 2.184. The infrared spectrum shows the absence of H2O molecules and OH groups. The chemical composition is (electron microprobe, wt.%): Na2O 3.45, CaO 2.88, MnO 0.31, PbO 0.76, Bi2O3 29.81, ThO2 0.18, TiO2 3.89, SnO2 1.77, Nb2O5 4.50, Ta2O5 51.08, F 1.17, O = F –0.49, total 99.31. The empirical formula, on the basis of 2 cations at the B site, is (Bi0.79Na0.68Ca0.32Mn0.03Pb0.02□0.16)Σ2.00(Ta1.42Ti0.30Nb0.21Sn0.07)Σ2.00O6.00(O0.52F0.38□0.10)Σ1.00. The crystal structure refinement (R = 0.019) gave the following data: cubic, Fd–3m, a = 10.4746(11) Å, V = 1149.2(4) Å3 and Z = 8. The eight strongest lines of the powder X-ray diffraction pattern [d, Å(I, %)(hkl)] are: 6.051(12)(111), 3.160(10)(311), 3.026(100)(222), 2.621(32)(400), 1.854(33)(440), 1.581(27)(622), 1.514(7)(444) and 1.203(7)(662). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 5409/1.


2017 ◽  
Vol 81 (3) ◽  
pp. 629-640 ◽  
Author(s):  
Hans-Jürgen Förster ◽  
Luca Bindi ◽  
Chris J. Stanley ◽  
Günter Grundmann

AbstractHansblockite, ideally (Cu,Hg)(Bi,Pb)Se2, is a new selenide from the El Dragón mine, Bolivia. It typically occurs in thin subparallel plates intergrown with two unnamed Cu–Hg–Pb–Bi–Se species, clausthalite, Corich penroseite and petrovicite.It also forms subhedral to anhedral grains up to 150 μm long and 50 μm wide. Hansblockite is non-fluorescent, black and opaque with a metallic lustre and black streak. It is brittle, with an irregular fracture and no obvious parting and cleavage. The VHN20 values range from37 to 50 (mean 42) kg mm–2 (Mohs hardness 2–2½). In plane-polarized incident light, hansblockite is cream to light grey in colour, weakly bireflectant and weakly pleochroic from greyish cream to cream. Under crossed polars, hansblockite is weakly anisotropic withkhaki to pale blue rotation tints. The reflectance values in air for the Commission on Ore Mineralogy (COM) standard wavelengths are: 47.3–48.1 (470 nm), 47.4–49.9 (546 nm), 47.1–49.0 (589 nm) and 46.6–48.5 (650 nm). The mean composition is Cu 9.31, Ag 0.73, Hg 11.43,Pb 3.55, Ni 0.17, Co 0.03, Bi 31.17, Se 34.00, total 100.39 wt.%. The mean empirical formula (based on 4 apfu) is (Cu0.68Hg0.27Ag0.03Ni0.01)∑=0.99(Bi0.69Pb0.31)∑=1.00Se2.01. The simplifiedformula is (Cu,Hg) (Bi,Pb)Se2. Hansblockite is monoclinic, space group P21/c, with a = 6.853(1), b = 7.635(1), c = 7.264(1) Å, β = 97.68(1)°, V = 376.66(9) Å3 and Z = 4. Density is 8.26 gcm–3. The five strongest powder X-ray diffraction lines [d in Å (I/I0) (hkl)] are: 3.97 (90) (111), 3.100 (40) (121), 2.986 (100) (211), 2.808 (50) (112) and 2.620 (50) (022). Hansblockite represents the monoclinic polymorph ofgrundmannite, CuBiSe2, with Hg and Pb being essential in stabilizing the monoclinic structure via the coupled substitution Cu+ + Bi3+⇔ Hg2+ + Pb2+. The mineral name is in honour of Hans Block (1881–1953), in recognition of hisimportant role in boosting Bolivian ore mining.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 449 ◽  
Author(s):  
Nikita Chukanov ◽  
Natalia Zubkova ◽  
Sergey Britvin ◽  
Igor Pekov ◽  
Marina Vigasina ◽  
...  

The new mineral nöggerathite-(Ce) was discovered in a sanidinite volcanic ejectum from the Laach Lake (Laacher See) paleovolcano in the Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral. Nöggerathite-(Ce) has a color that ranges from brown to deep brownish red, with adamantine luster; the streak is brownish red. It occurs in cavities of sanidinite and forms long prismatic crystals measuring up to 0.02 × 0.03 × 1.0 mm, with twins and random intergrowths. Its density calculated using the empirical formula is 5.332 g/cm3. The Vickers hardness number (VHN) is 615 kgf/mm2, which corresponds to a Mohs’ hardness of 5½. The mean refractive index calculated using the Gladstone–Dale equation is 2.267. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition (electron microprobe holotype/cotype in wt %) is as follows: CaO 5.45/5.29, MnO 4.19/4.16, FeO 7.63/6.62, Al2O3 0.27/0.59, Y2O3 0.00/0.90, La2O3 3.17/3.64, Ce2O3 11.48/11.22, Pr2O3 1.04/0.92, Nd2O3 2.18/2.46, ThO2 2.32/1.98, TiO2 17.78/18.69, ZrO2 27.01/27.69, Nb2O5 17.04/15.77, total 99.59/99.82, respectively. The empirical formulae based on 14 O atoms per formula unit (apfu) are: (Ce0.59La0.165Nd0.11Pr0.05)Σ0.915Ca0.82Th0.07Mn0.50Fe0.90Al0.045Zr1.86Ti1.88Nb1.07O14 (holotype), and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14 (cotype). The simplified formula is (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Nöggerathite-(Ce) is orthorhombic, of the space group Cmca. The unit cell parameters are: a = 7.2985(3), b = 14.1454(4), c = 10.1607(4) Å, and V = 1048.99(7) Å3. The crystal structure was solved using single-crystal X-ray diffraction data. Nöggerathite-(Ce) is an analogue of zirconolite-3O, ideally CaZrTi2O7, with Nb dominant over Ti in one of two octahedral sites and REE dominant over Ca in the eight-fold coordinated site. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 2.963 (91) (202), 2.903 (100) (042), 2.540 (39) (004), 1.823 (15) (400), 1.796 (51) (244), 1.543 (20) (442), and 1.519 (16) (282), respectively. The type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia (registration number 5123/1).


2016 ◽  
Vol 80 (5) ◽  
pp. 855-867 ◽  
Author(s):  
Igor V. Pekov ◽  
Natalia V. Zubkova ◽  
Vasiliy O. Yapaskurt ◽  
Yury S. Polekhovsky ◽  
Marina F. Vigasina ◽  
...  

AbstractThe new mineral melanarsite, K3Cu7Fe3+O4(AsO4)4, was found in the sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Russia. It is associated with dmisokolovite, shchurovskyite, bradaczekite, hematite, tenorite, aphthitalite, johillerite, arsmirandite, As-bearing orthoclase, hatertite, pharmazincite, etc. Melanarsite occurs as tabular to prismatic crystals up to 0.4 mm, separate or combined in clusters up to 1 mm across or in interrupted crusts up to 0.02 cm × 1 cm × 1 cm covering basalt scoria. The mineral is opaque, black, with a vitreous lustre. Melanarsite is brittle. Mohs' hardness is ∼4 and the mean VHN = 203 kg mm–2. Cleavage was not observed and the fracture is uneven. Dcalc is 4.39 g cm–3. In reflected light, melanarsite is dark grey. Bireflectance is weak, anisotropism is very weak. Reflectance values [R1–R2, % (λ, nm)] are 10.5–9.4 (470), 10.0–8.9 (546), 9.7–8.7 (589), 9.5–8.6 (650). The Raman spectrum is reported. Chemical composition (wt.%, electron microprobe) is K2O 10.70, CaO 0.03, CuO 45.11, ZnO 0.24, Al2O3 0.32, Fe2O3 6.11, TiO2 0.12, P2O5 0.07, As2O5 36.86, total 99.56. The empirical formula, based on 20 O apfu, is (K2.81Ca0.01)∑2.82(Cu7.02Fe3+0.95Al0.08Zn0.04Ti0.02)∑8.11(As3.97P0.01)∑3.98O20. Melanarsite is monoclinic, C2/c, a = 11.4763(9), b = 16.620(2), c = 10.1322(8) Å, β = 105.078(9)°, V = 1866.0(3) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are 9.22(100)(110), 7.59(35)(1₃11), 6.084(17) (111), 4.595(26)(1₃31, 220, 2₃21), 3.124(22)(3₃31, 1₃51), 2.763(20)(400, 1₃52), 2.570(23)(043) and 2.473(16) (260, 2₃61, 350). Melanarsite has a novel structure type. Its crystal structure, solved from single-crystal X-ray diffraction data (R = 0.091), is based upon a heteropolyhedral pseudo-framework built by distorted Cu(1–3)O6 and (Fe,Cu)O6 octahedra and As(1–3)O4 tetrahedra. Two crystallographically independent K+ cations are located in the tunnels and voids of the pseudo-framework centring eight- and seven-fold polyhedra. The name reflects the mineral being an arsenate and its black colour (from the Greek μέλαν, black).


2020 ◽  
Vol 84 (5) ◽  
pp. 738-745 ◽  
Author(s):  
Anatoly V. Kasatkin ◽  
Emil Makovicky ◽  
Jakub Plášil ◽  
Radek Škoda ◽  
Atali A. Agakhanov ◽  
...  

AbstractLuboržákite, ideally Mn2AsSbS5, is a new mineral from the Vorontsovskoe gold deposit, Northern Urals, Russia. It forms long-prismatic crystals up to 70 × 20 μm and anhedral grains of the same size embedded in the matrix of Mn-bearing dolomite and Mn-bearing calcite. Associated minerals include pyrite, orpiment, realgar, stibnite, aktashite, alabandite, boscardinite, chabournéite, coloradoite, clerite, écrinsite, gold, routhierite, sphalerite and twinnite. Luboržákite is black, opaque with metallic lustre and has a black streak. It is brittle and has an uneven fracture. No cleavage and parting have been observed. Mohs hardness is 4–4½. Dcalc = 4.181 g cm–3. In reflected light, luboržákite is tin-white, weakly anisotropic with rotation tints varying from dark grey to grey. The chemical composition of luboržákite is (wt.%; electron microprobe, WDS mode): Mn 21.23, Cu 0.29, Ag 0.56, Pb 1.90, As 15.25, Sb 27.03, S 33.23, total 99.49. The empirical formula based on the sum of all atoms = 9 apfu is Mn1.86Pb0.04Ag0.03Cu0.02As0.98Sb1.07S5.00. The new mineral is monoclinic, space group C2/m with a = 12.5077(6), b = 3.8034(2), c = 16.0517(8) Å, β = 94.190(4)°, V = 761.57(6) Å3 and Z = 4. The crystal structure of luboržákite was solved from the single-crystal X-ray diffraction data to R = 0.0383 for 712 observed reflections with I > 3σ(I). Luboržákite is a new member of the heterochemical isostructural series of ‘unit-cell twinned’ structures, named the pavonite series. The new mineral honours Lubor Žák, a prominent Czech crystallographer and the professor of the Charles University in Prague, Czech Republic.


2017 ◽  
Vol 81 (3) ◽  
pp. 531-541 ◽  
Author(s):  
A. Vymazalová ◽  
F. Laufek ◽  
S. F. Sluzhenikin ◽  
C. J. Stanley

AbstractNorilskite, (Pd,Ag)7Pb4 is a new platinum-group mineral discovered in the Mayak mine of the Talnakh deposit, Russia. It forms anhedral grains in aggregates (up to ∼400 μm) with polarite, zvyagintsevite, Pd-rich tetra-auricupride, Pd-Pt bearing auricupride,Ag-Au alloys, (Pb,As,Sb) bearing atokite, mayakite, Bi-Pb-rich kotulskite and sperrylite in pentlandite, cubanite and talnakhite. Norilskite is brittle, has a metallic lustre and a grey streak. Values of VHN20 fall between 296 and 342 kg mm–2, with a mean valueof 310 kg mm–2, corresponding to a Mohs hardness of ∼4. In plane-polarized light, norilskite is orange-brownish pink, has moderate to strong bireflectance, orange-pink to greyish-pink pleochroism, and strong anisotropy; it exhibits no internal reflections. Reflectancevalues of norilskite in air (Ro, Re' in %) are: 51.1, 48.8 at 470 nm, 56.8, 52.2 at 546 nm, 59.9, 53.5 at 589 nm and 64.7, 55.5 at 650 nm. Sixteen electronmicroprobe analyses of natural norilskite gave an average composition: Pd 44.33, Ag 2.68, Bi 0.33 and Pb 52.34, total99.68 wt.%, corresponding to the empirical formula (Pd6.56Ag0.39)∑6.95(Pb3.97Bi0.03)∑4.00 based on 4 Pb + Bi atoms; the average of eight analyses on synthetic norilskite is: Pd 42.95, Ag 3.87 and Pb 53.51, total 100.33wt.%, corresponding to (Pd6.25Ag0.56)∑6.81Pb4.00. The mineral is trigonal, space group P3121, with a = 8.9656(4), c = 17.2801(8) Å, V = 1202.92(9) Å3 and Z = 6. The crystalstructure was solved and refined from the powder X-ray diffraction data of synthetic (Pd,Ag)7Pb4. Norilskite crystallizes in the Ni13Ga3Ge6 structure type, related to nickeline. The strongest lines in the powder X-ray diffraction patternof synthetic norilskite [d in Å (I) (hkl)] are: 3.2201(29)(023,203), 2.3130(91)(026,206), 2.2414(100)(220), 1.6098(28)(046,406), 1.3076(38)(246,462), 1.2942(18)(600), 1.2115(37)(22.12,12.13), 0.9626(44) (06.12,60.12). The mineral is named for the locality, the Noril'sk district in Russia.


Sign in / Sign up

Export Citation Format

Share Document