The crystal structure of barikaite

2013 ◽  
Vol 77 (8) ◽  
pp. 3093-3104 ◽  
Author(s):  
E. Makovicky ◽  
D. Topa

AbstractElectron microprobe analysis of barikaite (Topa et al., 2013) indicates the chemical formula Ag2.90Tl0.04Pb9.31As11.26Sb8.12S40.37. Barikaite is monoclinic, with a 8.533(1) Å, b 8.075(1) Å, c 24.828(2) Å, and β 99.077(1)°; unit-cell volume 1689.2 Å3 and the space-group setting is P21/n. This compares well with the unit-cell parameters of rathite Pb10Tl0.9As17.9Sb1.3Ag2S40 from the Lengenbach deposit with the same lattice setting. Barikaite is a member of sartorite homologous series (N = 4). The unit cell of barikaite contains eight cation sites and ten anion sites. Four of the cation sites have mixed occupancies – the split sites As2–Sb2, As3–Sb3, Ag5–As5 and the site Me6 with three cations involved. Two of the lead sites, Pb1 and Pb2, display tricapped trigonal prismatic coordinations and alternate along the 8.53 Å a direction. They form zig-zag walls parallel to (001). There are three distinct [100] columns of alternating cations, As1–(As, Sb)2, Sb4–(As, Sb)3 and (As, Ag)5–(Pb, Sb)6 which together form trapezoidally configured single (013) layers. These layers aggregate into tightly-bonded double layers, separated by lone electron pair micelles. In barikaite, the predominantly As-occupied and Sb-occupied sites are distributed in a chess-board-like scheme.

Author(s):  
Cristian Biagioni ◽  
Yves Moëlo ◽  
Georges Favreau ◽  
Vincent Bourgoin ◽  
Jean-Claude Boulliard

The crystal structure of a specimen of `Pb-rich' chabournéite from Jas Roux, Hautes-Alpes, France, with the chemical formula obtained by electron microprobe analysis of Ag0.04 (1)Tl2.15 (2)Pb0.64 (1)Sb5.12 (1)As5.05 (1)S17.32 (5), has been solved by X-ray single-crystal diffraction on the basis of 36 550 observed reflections (withFo> 4σFo) with a finalR1= 0.074. Pb-rich chabournéite is triclinicP1, with unit-cell parametersa= 8.5197 (4),b= 42.461 (2),c= 16.293 (8) Å, α = 83.351 (2), β = 90.958 (2), γ = 84.275 (2)°,V= 5823 (3) Å3. Its structural formula is close to [Tl2(Pb0.8Tl0.1Sb1.1)](Sb4.1As4.9)S17, withZ= 8. Its crystal structure is formed by the alternation of two pairs of slabs along thebaxis, deriving from the SnS and PbS archetypes, respectively. 104 independent cation sites and 136 S sites occur in the unit cell. Slab interfaces show the alternation, alongc, of Tl sites, ninefold coordinated, with Pb, Sb or mixed/split (Pb,Sb) and (Pb,Tl) sites. Within the slabs, 72 independentM3+sites (M3+= As, Sb) occur. ConsideringM3+—S bond distances shorter than 2.70 Å,MS3triangular pyramidal groups are condensed according to variousMmSnchain fragments (`polymers'). The solution of the crystal structure of chabournéite allows its comparison with the closely related homeotypes protochabournéite and dalnegroite.


2013 ◽  
Vol 28 (4) ◽  
pp. 269-275
Author(s):  
Sytle M. Antao

Twenty-seven scapolite samples from various localities and with compositions between Me6–93 were obtained using electron microprobe analysis (EMPA). Their unit-cell parameters were obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements using space group P42/n. The EMPA data show the well-known discontinuity at Me75. In addition, the unit-cell parameters, especially c, show a discontinuity at Me75 (=five Al atoms per formula unit, apfu), ideally NaCa3[Al5Si7O24](CO3), where the scapolite solid solution is divided into two (Me% = [Ca/(Ca + Na + K)] × 100). A maximum c parameter value occurs at Me37.5 (=four Al apfu ideally), where complete Al–Si, Na–Ca, and Cl–CO3 order occurs. The unit-cell volume, V, varies smoothly with Me% and Al apfu across the series.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2009 ◽  
Vol 73 (5) ◽  
pp. 709-722 ◽  
Author(s):  
A. J. Lussier ◽  
M. A. Cooper ◽  
F. C. Hawthorne ◽  
R. Kristiansen

AbstractTwo crystals from a sample of titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway, were extracted for structure analysis and shown to have triclinic symmetry. Unit-cell parameters are as follows: a = 7.0696(4) Å, b = 8.7167(5) Å, c = 6.5695(3) Å, α = 89.7372(11)°, β = 113.7607(10)°, γ = 90.2929(13)°, V = 370.52(6) Å3 for one crystal and a = 7.0612(5) Å, b = 8.7102(6) Å, c = 6.5628(4) Å, α = 89.7804(16)°, β = 113.7713(13)°, γ = 90.2502(16)°, V = 369.39(7) Å3 for the other. The interaxial angles α and γ deviate from the value of 90° required for monoclinic symmetry by ~200–250 standard deviations. The single-crystal X-ray intensities were averaged in both monoclinic and triclinic Laue symmetries, giving R(merge) values of ~14% and ~1.3% respectively. For both crystals, more than 50 reflections with I > 3σI violated the criterion for the presence of the a-glide required for monoclinic A2/a symmetry. Both crystals were refined in the space group A with Z = 4, and final R1 indices are 4.4% and 4.7% (wR2 = 8.4 and 8.9%) respectively. The composition of one crystal was determined by electron microprobe analysis: Ca[Ti0.623Ta0.105Nb0.018Al0.137Fe0.0463+Sn0.0834+]Σ=1.012(SiO4)O. The characteristic corner-sharing [MO5] chains of identical octahedra observed in monoclinic titanite become chains of alternating M(1) and M(2) octahedra of different size, with the stronger X-ray scattering constituents concentrated at the M(2) site. Short-range bond-valence considerations suggest that the M cations will order as Al—O—Ta in adjacent octahedra, and when present in sufficient amounts, will couple along the chain to break long-range monoclinic symmetry.


2018 ◽  
Vol 82 (2) ◽  
pp. 275-290 ◽  
Author(s):  
Vadim M. Kovrugin ◽  
Oleg I. Siidra ◽  
Igor V. Pekov ◽  
Nikita V. Chukanov ◽  
Dmitry A. Khanin ◽  
...  

ABSTRACTEmbreyite from the Berezovskoe, Urals, Russia, was studied by the means of powder X-ray diffraction (XRD), single-crystal XRD, infrared spectroscopy and microprobe analysis. The empirical formula of embreyite obtained on the basis of microprobe analysis is Pb1.29Cu0.07Cr0.52P0.43O4(without taking into account the presence of H2O). An examination of single-crystal XRD frames of the tested crystals cut from embreyite intergrowths revealed split reflection spots of weak intensities, even after a long exposure time. The crystal structure of embreyite (monoclinic,C2/m,a= 9.802(16),b= 5.603(9),c= 7.649(12) Å, β = 114.85(3)oandV= 381.2(11) Å3) has been solved by direct methods and refined toR1= 0.050 for 318 unique observed reflections. The powder XRD patterns of the holotype embreyite and the fresh material studied are close in bothdvalues and the intensities match the pattern calculated from the structural single-crystal XRD data. The unit-cell parameters were re-calculated for the holotype sample using a new cell setting and correspondinghklindices. The crystal structure of embreyite is based on layers formed by corner-sharing mixed chromate-phosphate tetrahedra and PbO6distorted octahedra. The interlayer space is filled by disordered Pb2+and Cu2+cations. Generally, the crystal structure of embreyite can be referred to the structural type of palmierite. {Pb[(Cr,P)O4]2]} layers in embreyite are similar in topology to those in yavapaiite-type compounds. The general formula of embreyite can be represented as (Pbx$M_y^{2 +} $□1–x–y)2{Pb[(Cr,P)O4]2}(H2O)n, whereM2+= Cu and Zn and 0.5 ≤x+y≤ 1, or, in the simplified form: (Pb,Cu,□)2{Pb[(Cr,P)O4]2}(H2O)n. The simplified formula of embreyite is similar in stoichiometry to vauquelinite and may explain the existence of the solid-solution series. The determination of the crystal structure of embreyite may also help to resolve the crystal chemical nature of cassedanneite. The XRD pattern of cassedanneite contains a distinct reflection withd= 13.9 Å, forbidden for the embreyite unit cell. This feature may indicate the doubling of thecunit-cell parameter of cassedanneite in comparison with embreyite. We assume that cassedanneite has structural similarity to embreyite with, presumably, a disordered distribution of Cr and V.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1095-C1095
Author(s):  
Marcelo Andrade ◽  
Javier Ellena ◽  
Daniel Atencio

Fluorcalciomicrolite, Ca1.5Ta2O6F, and hydroxycalciomicrolite, Ca1.5Ta2O6(OH), are new microlite-group [1] minerals found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Both occur as octahedral and rhombododecahedral crystals. The crystals are colourless, yellow and translucent, with vitreous to resinous luster. The densities calculated for fluorcalciomicrolite [2] and hydroxycalciomicrolite are 6.160 and 6.176 g/cm3, respectively. The empirical formulae obtained from electron microprobe analysis are (Ca1.07Na0.81□0.12)Σ2(Ta1.84Nb0.14Sn0.02)Σ2[O5.93(OH)0.07]Σ6.00[F0.79(OH)0.21] for fluorcalciomicrolite and (Ca1.48Na0.06Mn0.01)Σ1.55(Ta1.88Nb0.11Sn0.01)Σ2O6[(OH)0.76F0.20O0.04] for hydroxycalmicrolite. Fluorcalciomicrolite is cubic, space group Fd-3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, and Z = 8. Hydroxycalciomicrolite is also cubic; however, the presence of P-lattice is confirmed by the large number of weak reflections observed by X-ray diffraction. As a result, the space group is P4332 and unit-cell parameters are a = 10.4211(8) Å, and V = 1131.72(15) Å3.


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


2017 ◽  
Vol 81 (3) ◽  
pp. 555-564 ◽  
Author(s):  
M. B. Andrade ◽  
H. Yang ◽  
D. Atencio ◽  
R. T. Downs ◽  
N. V. Chukanov ◽  
...  

AbstractHydroxycalciomicrolite, Ca1.5Ta2O6(OH) is a new microlite-group mineral found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. It occurs as isolated octahedral and as a combination of octahedral and rhombic dodecahedral crystals, up to1.5 mm in size. The crystals are yellow and translucent, with a white streak and vitreous to resinous lustre. The mineral is brittle, with a Mohs hardness of 5–6. Cleavage is not observed and fracture is conchoidal. The calculated density is 6.176 g cm–3. Hydroxycalciomicroliteis isotropic,ncalc.= 2.010. The infrared and Raman spectra exhibit bands due to O–H stretching vibrations. The chemical composition determined from electron microprobe analysis (n= 13) is (wt.%): Na2O 0.36(8), CaO 15.64(13), SnO20.26(3),Nb2O52.82(30), Ta2O578.39(22), MnO 0.12(2), F 0.72(12) and H2O 1.30 (from the crystal structure data), O = F –0.30, total 99.31(32), yielding an empirical formula, (Ca1.48Na0.06Mn0.01)∑1.55(Ta1.88Nb0.11Sn0.01)∑2.00O6.00[(OH)0.76F0.20O0.04].Hydroxycalciomicrolite is cubic, with unit-cell parametersa= 10.4205(1) Å,V= 1131.53(2) Å3andZ= 8. It represents a pyrochlore supergroup, microlite-group mineral exhibitingP4332 symmetry, instead ofFd3m. Thereduction in symmetry is due to long-range ordering of Ca and vacancies on theAsites. This is the first example of such ordering in a natural pyrochlore, although it is known from synthetic compounds. This result is promising because it suggests that other species withP4332or lower-symmetry space group can be discovered and characterized.


2017 ◽  
Vol 81 (6) ◽  
pp. 1431-1437 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

AbstractMagnesio-riebeckite from the dumps of the abandoned mine of Varenche (45°47’22’’ N, 7°29’17’’ E), Saint-Barthélemy, Nus, Aosta Valley (Italy), was studied to provide the complete mineral description (including crystal structure) and insights into the crystal-chemistry of riebeckite. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(Na0.09K0.01)Σ=0.10B(Na1.77Ca0.11Mg0.08Mn2+ 0:04)Σ=2.00C(Mg2.93Mn2+0:13Fe2+0:07Zn0.01Ni0.12Fe3+1:25Al0.48Ti0.01)Σ=5.00T(Si7.92Al0.08)Σ=8.00 O22W(OH1.88F0.12)Σ=2.00. Magnesio-riebeckite is biaxial (+), with α = 1.678(2), β = 1.682(2), γ = 1.688(2) and 2V (meas.) = 80.2(1.7)°, 2V (calc.) = 78.7°. The unit-cell parameters are a = 9.6481(14), b = 17.873(3), c = 5.3013(7) Å, β = 103.630(2)°, V = 888.4 (2)Å3, Z = 2, space group C2/m. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.701, 100, (151); 8.303, 83, (110); 3.079, 62, (310); 3.391, 53, (131); 4.467, 50, (040,021); 2.522, 50, (̅202); 2.578, 35, (061); 2.155, 30, (261), 4.855, 30, (̅111), 2.300, 29, (̅351).


2021 ◽  
Vol 33 (6) ◽  
pp. 717-726
Author(s):  
Daniela Mauro ◽  
Cristian Biagioni ◽  
Federica Zaccarini

Abstract. Gersdorffite, ideally NiAsS, and associated minerals from Contrada Zillì (Peloritani Mountains, Sicily, Italy) have been characterized through electron microprobe analysis and X-ray diffraction. Primary minerals, hosted in quartz veins, are represented by gersdorffite, tetrahedrite-(Fe), and chalcopyrite with minor pyrite and galena. Rare aikinite inclusions were observed in tetrahedrite-(Fe) and chalcopyrite. Gersdorffite occurs as euhedral to subhedral crystals, up to 1 mm in size, with (Sb,Bi)-enriched cores and (Fe,As)-enriched rims. Its chemical composition is (Ni0.79−0.95Fe0.18−0.04Co0.04−0.01)(As0.90−1.03Sb0.10−0.00Bi0.02−0.00)S0.98−0.92. It crystallizes in the space group P213, with unit-cell parameters a=5.6968(7) Å, V=184.88(7) Å3, and Z=4, and its crystal structure was refined down to R1= 0.035. Associated tetrahedrite-(Fe) has chemical formula (Cu5.79Ag0.07)Σ5.86(Cu3.96Fe1.59Zn0.45)Σ6.00(Sb3.95As0.17Bi0.03)Σ4.15S13.06, with unit-cell parameters a= 10.3815(10) Å, V=1118.9(3) Å3, and space group I-43m. Its crystal structure was refined to R1=0.027. Textural and crystallographic data suggest a polyphasic crystallization of gersdorffite under low-temperature conditions.


Sign in / Sign up

Export Citation Format

Share Document