Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway

2009 ◽  
Vol 73 (5) ◽  
pp. 709-722 ◽  
Author(s):  
A. J. Lussier ◽  
M. A. Cooper ◽  
F. C. Hawthorne ◽  
R. Kristiansen

AbstractTwo crystals from a sample of titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway, were extracted for structure analysis and shown to have triclinic symmetry. Unit-cell parameters are as follows: a = 7.0696(4) Å, b = 8.7167(5) Å, c = 6.5695(3) Å, α = 89.7372(11)°, β = 113.7607(10)°, γ = 90.2929(13)°, V = 370.52(6) Å3 for one crystal and a = 7.0612(5) Å, b = 8.7102(6) Å, c = 6.5628(4) Å, α = 89.7804(16)°, β = 113.7713(13)°, γ = 90.2502(16)°, V = 369.39(7) Å3 for the other. The interaxial angles α and γ deviate from the value of 90° required for monoclinic symmetry by ~200–250 standard deviations. The single-crystal X-ray intensities were averaged in both monoclinic and triclinic Laue symmetries, giving R(merge) values of ~14% and ~1.3% respectively. For both crystals, more than 50 reflections with I > 3σI violated the criterion for the presence of the a-glide required for monoclinic A2/a symmetry. Both crystals were refined in the space group A with Z = 4, and final R1 indices are 4.4% and 4.7% (wR2 = 8.4 and 8.9%) respectively. The composition of one crystal was determined by electron microprobe analysis: Ca[Ti0.623Ta0.105Nb0.018Al0.137Fe0.0463+Sn0.0834+]Σ=1.012(SiO4)O. The characteristic corner-sharing [MO5] chains of identical octahedra observed in monoclinic titanite become chains of alternating M(1) and M(2) octahedra of different size, with the stronger X-ray scattering constituents concentrated at the M(2) site. Short-range bond-valence considerations suggest that the M cations will order as Al—O—Ta in adjacent octahedra, and when present in sufficient amounts, will couple along the chain to break long-range monoclinic symmetry.

2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2014 ◽  
Vol 70 (a1) ◽  
pp. C1095-C1095
Author(s):  
Marcelo Andrade ◽  
Javier Ellena ◽  
Daniel Atencio

Fluorcalciomicrolite, Ca1.5Ta2O6F, and hydroxycalciomicrolite, Ca1.5Ta2O6(OH), are new microlite-group [1] minerals found in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Both occur as octahedral and rhombododecahedral crystals. The crystals are colourless, yellow and translucent, with vitreous to resinous luster. The densities calculated for fluorcalciomicrolite [2] and hydroxycalciomicrolite are 6.160 and 6.176 g/cm3, respectively. The empirical formulae obtained from electron microprobe analysis are (Ca1.07Na0.81□0.12)Σ2(Ta1.84Nb0.14Sn0.02)Σ2[O5.93(OH)0.07]Σ6.00[F0.79(OH)0.21] for fluorcalciomicrolite and (Ca1.48Na0.06Mn0.01)Σ1.55(Ta1.88Nb0.11Sn0.01)Σ2O6[(OH)0.76F0.20O0.04] for hydroxycalmicrolite. Fluorcalciomicrolite is cubic, space group Fd-3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, and Z = 8. Hydroxycalciomicrolite is also cubic; however, the presence of P-lattice is confirmed by the large number of weak reflections observed by X-ray diffraction. As a result, the space group is P4332 and unit-cell parameters are a = 10.4211(8) Å, and V = 1131.72(15) Å3.


2018 ◽  
Vol 82 (1) ◽  
pp. 189-198
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti ◽  
Olav Revheim ◽  
...  

ABSTRACTClino-suenoite, ideally □${\rm Mn}_{2}^{2 +} $Mg5Si8O22(OH)2 is a new amphibole of the magnesium-iron-manganese subgroup of the amphibole supergroup. The type specimen was found at the Lower Scerscen Glacier, Valmalenco, Sondrio, Italy, where it occurs in Mn-rich quartzite erratics containing braunite, rhodonite, spessartine, carbonates and various accessory minerals. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: ANa0.04B(${\rm Mn}_{1.58}^{2 +} $Ca0.26Na0.16)Σ2.00C(Mg4.21${\rm Mn}_{0. 61}^{2 +} {\rm Fe}_{0.04}^{2 +} $Zn0.01Ni0.01${\rm Fe}_{0.08}^{3 +} $Al0.04)Σ5.00TSi8.00O22W[(OH1.94F0.06)]Σ=2.00. Clino-suenoite is biaxial (+), with α = 1.632(2), β = 1.644(2), γ = 1.664(2) and 2Vmeas. = 78(2)° and 2Vcalc. = 76.3°. The unit-cell parameters in the C2/m space group are a = 9.6128(11), b = 18.073(2), c = 5.3073(6) Å, β = 102.825(2)° and V = 899.1(2) Å3 with Z = 2. The strongest ten reflections in the powder X-ray diffraction pattern [d (in Å), I, (hkl)] are: 2.728, 100, (151); 2.513, 77, ($\bar 2$02); 3.079, 62, (310); 8.321, 60, (110); 3.421, 54, (131); 2.603, 42, (061); 2.175, 42, (261); 3.253, 41, (240); 2.969, 40, (221); 9.036, 40, (020).


2017 ◽  
Vol 81 (6) ◽  
pp. 1431-1437 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

AbstractMagnesio-riebeckite from the dumps of the abandoned mine of Varenche (45°47’22’’ N, 7°29’17’’ E), Saint-Barthélemy, Nus, Aosta Valley (Italy), was studied to provide the complete mineral description (including crystal structure) and insights into the crystal-chemistry of riebeckite. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(Na0.09K0.01)Σ=0.10B(Na1.77Ca0.11Mg0.08Mn2+ 0:04)Σ=2.00C(Mg2.93Mn2+0:13Fe2+0:07Zn0.01Ni0.12Fe3+1:25Al0.48Ti0.01)Σ=5.00T(Si7.92Al0.08)Σ=8.00 O22W(OH1.88F0.12)Σ=2.00. Magnesio-riebeckite is biaxial (+), with α = 1.678(2), β = 1.682(2), γ = 1.688(2) and 2V (meas.) = 80.2(1.7)°, 2V (calc.) = 78.7°. The unit-cell parameters are a = 9.6481(14), b = 17.873(3), c = 5.3013(7) Å, β = 103.630(2)°, V = 888.4 (2)Å3, Z = 2, space group C2/m. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.701, 100, (151); 8.303, 83, (110); 3.079, 62, (310); 3.391, 53, (131); 4.467, 50, (040,021); 2.522, 50, (̅202); 2.578, 35, (061); 2.155, 30, (261), 4.855, 30, (̅111), 2.300, 29, (̅351).


2013 ◽  
Vol 28 (4) ◽  
pp. 269-275
Author(s):  
Sytle M. Antao

Twenty-seven scapolite samples from various localities and with compositions between Me6–93 were obtained using electron microprobe analysis (EMPA). Their unit-cell parameters were obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinements using space group P42/n. The EMPA data show the well-known discontinuity at Me75. In addition, the unit-cell parameters, especially c, show a discontinuity at Me75 (=five Al atoms per formula unit, apfu), ideally NaCa3[Al5Si7O24](CO3), where the scapolite solid solution is divided into two (Me% = [Ca/(Ca + Na + K)] × 100). A maximum c parameter value occurs at Me37.5 (=four Al apfu ideally), where complete Al–Si, Na–Ca, and Cl–CO3 order occurs. The unit-cell volume, V, varies smoothly with Me% and Al apfu across the series.


2018 ◽  
Vol 82 (6) ◽  
pp. 1253-1259
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Marco E. Ciriotti

ABSTRACTMagnesio-hornblende (IMA2017-059) has been characterized in a specimen collected in the sand dunes of Lüderitz, Karas Region, Namibia. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is A(□0.73Na0.22K0.05)Σ1.00B(Ca1.79Fe2+0.10Mg0.04Mn2+0.03Na0.04)Σ2.00C(Mg3.48Fe2+0.97Al0.28Fe3+0.23Cr3+0.01Ti0.03)Σ5.00T(Si7.18Al0.82)Σ8.00O22W[(OH)1.93F0.05Cl0.02]Σ2.00. Magnesio-hornblende is biaxial (–), with α = 1.640(2), β = 1.654(2), γ = 1.666(2) (measured with gel-filtered Na light, λ = 589.9 nm), 2V (meas.) = 82(1)° and 2V (calc.) = 84.9°. The unit-cell parameters are a = 9.8308(7), b = 18.0659(11), c = 5.2968(4) Å, β = 104.771(6)° and V = 909.64 (11) Å3 with Z = 2 and space group C2/m. The strongest eight reflections in the X-ray powder pattern [d values (in Å), I, (hkl)] are: 2.709, 100, (151); 8.412, 74, (110); 3.121, 73, (310); 2.541, 58, ($\bar{2}$02); 3.386, 49, (131); 2.596, 45, (061); 2.338, 41, ($\bar{3}$51); and 2.164, 39, (261).


2016 ◽  
Vol 80 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Neil A. Ball ◽  
Fernando Cámara ◽  
...  

AbstractFerro-ferri-hornblende is a new member of the amphibole supergroup (IMA-CNMNC 2015-054). It has been found in a rock specimen from the historical collection of Leandro De Magistris, which was collected at the Traversella mine (Val Chiusella, Ivrea, Piemonte, Italy). The specimen was catalogued as ‘speziaite', and contains a wide range of amphibole compositions from tremolite/actinolite to magnesio-hastingsite. The end-member formula of ferro-ferri-hornblende is A□BCa2c(Fe+Fe3+)T(Si7Al) O22W(OH)2 , which requires SiO2 43.41, Al2O3 5.26, FeO 29.66, Fe2O3 8.24 CaO 11.57, H2O 1.86, total 100.00 wt.%. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement for the holotype crystal is A(Na0.10K0.13) Σ=0.23B(Ca 1.93Na0.07)Σ=2.00C(Mg1.16Fe2+3.21Mn0.O6Fe3+0.45 Al0.12Ti 0.01)Σ=5.01T(Si7.26Al0. 74)Σ=8.00 O22W(OH1.89F0.01C10.10)Σ=2.00- Ferro-ferri-hornblende is biaxial (-), with α = 1.697(2), P = 1 .722(5), γ = 1.726(5) and 2V (meas.) = 35.7(1.4)°, 2V (calc.) = 43.1°. The unit-cell parameters are a = 9.9307(5), b = 18.2232(10), c = 5.3190(3) Å, β = 104.857(1)°, V= 930.40 (9) Å3, Z= 2, space group C2/m. The a:b:c ratio is 0.545:1:0.292. The strongest eight reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 8.493, 100, (110); 2.728, 69, (151); 3.151, 47, (310); 2.555, 37, (); 2.615, 32, (061); 2.359, 28, (); 3.406, 26, (131); 2.180, 25, (261). Type material is deposited in the collections of the Museo di Mineralogia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, under the catalogue number 2015-01. Sample M/U15285 from the historical collection of Luigi Colomba, presently at the Museo Regionale di Scienze Naturali di Torino, was also checked, and the presence of ferro-ferri-hornblende was confirmed.


2018 ◽  
Vol 33 (3) ◽  
pp. 216-224 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
A. Y. Chufarov ◽  
N. I. Lobachevskaya ◽  
A. A. Velikodnyi

Polycrystalline samples of Ca2Zn2(V4O14) (I) and Pb2Cd2(V3O10)(VO4) (II) were synthesized using the nitrate–citrate method (I) and conventional solid state reaction (II). The structural refinement based on X-ray powder diffraction data showed that the crystal structure of (I) is characterized by monoclinic symmetry with unit-cell parameters a = 6.8044(1) Å, b = 14.4876(3) Å, c = 11.2367(2) Å, β = 99.647(1)° [space group P21/c (No. 14), Z = 4], and the crystal structure of (II) is triclinic with unit-cell parameters a = 7.03813(6) Å, b = 12.9085(1) Å, c = 6.99961(5) Å, α = 90.7265(5)°, β = 96.3789(5)°, γ = 94.9530(6)°, V = 629.470(8) Å3 [space group P$\bar 1$ (No. 2), Z = 2].


2003 ◽  
Vol 17 (04n06) ◽  
pp. 936-941 ◽  
Author(s):  
M. SCAVINI ◽  
L. MOLLICA ◽  
R. BIANCHI ◽  
G. A. COSTA ◽  
M. FERRETTI ◽  
...  

We present here a study on the effect of Al doping on the stucture of SmBa 2 Cu 3-X Al X O 6+δ (Sm-123) superconductor. Electron MicroProbe Analysis (EMPA) and X-Ray Powder Diffraction (XRPD) have revealed that the limit of a aluminium solubility x is between 0.5 and 0.6. For further doping BaAl 2 O 4 appears besides the superconducting phase. XRPD analysis on samples annealed in both oxidising and reducing conditions have revealed that the Al doping inhibits the tetragonal to orthorhombic phase transition. Nuclear Magnetic Resonance (NMR) analysis has shown that almost all the Al ions are coordinated tetrahedrally. The comparison between oxygen non-stoichiometry in pure and Al doped SmBa 2 Cu 3-X Al X O 6+δ suggests that the Al ions are ordered in clusters. A model is proposed for short-range order around Al doping ions which allows us to interpret the phase transition inhibition.


2007 ◽  
Vol 22 (1) ◽  
pp. 68-70
Author(s):  
R. Putvinskis ◽  
C. O. Paiva Santos ◽  
M. Cavicchioli ◽  
A. C. Massabni

X-ray powder diffraction data collected for the complex silver(I) cyclamate [Ag(C6H12NO3S)] are reported. This material was obtained from a stoichiometric mixture of sodium cyclamate and AgNO3. The analysis of the data using the Le Bail method showed that the complex has monoclinic symmetry (space group C2/c). The unit cell parameters are a=31.85852(16) Å, b=6.25257(6) Å, c=8.46165(7) Å, and β=95.7651(5)°.


Sign in / Sign up

Export Citation Format

Share Document