symmetry space group
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John Krautwurst ◽  
Rainer Lamann ◽  
Uwe Ruschewitz

Abstract Reaction of Sc(NO3)3·5H2O with K(H2 pF-BTC) – the monopotassium salt of perfluorinated trimesic acid – led to the formation of single crystals of [ Sc ( p F − BTC ) ( H 2 O ) 3 ] ∞ 1 ⋅ 4 H 2 O ${}_{\infty }{}^{1}[\text{Sc}(pF-\text{BTC}){({\text{H}}_{2}\text{O})}_{3}]\cdot 4{\text{H}}_{2}\text{O}$ ( P 1 ‾ $P‾{1}$ , Z = 2). DTA/TGA measurements revealed that all water molecules were released below 200 °C. Using powder synchrotron radiation diffraction data, the crystal structure of the residue of the dehydration was elucidated and the results confirmed the formula [ Sc ( p F − BTC ) ] ∞ 3 ${}_{\infty }{}^{3}[\text{Sc}(pF-\text{BTC})]$ (Fddd, Z = 16). The compound is similar, but not isostructural to the recently published UoC-4 (I41/amd, Z = 8; UoC: University of Cologne) with a difluorinated trimesate (dF-BTC3–) as connecting linker. Both compounds can be classified as metal-organic frameworks (MOFs) consisting of a 3D network of Sc3+ nodes connected by the fluorinated trimesate ligands. They contain small pores, but their opening windows are too small for any guest molecules to pass. Remarkably, UoC-4 with a lower symmetric ligand (dF-BTC3–) crystallizes in a higher symmetry space group (I41/amd) than UoC-6 (Fddd). This can be rationalized by increasing torsion angles of the carboxylate moieties in the pF-BTC3– ligand.


2021 ◽  
Vol 0 (1) ◽  
pp. 44-48
Author(s):  
Z.V. GAREEVA ◽  
◽  
E.I. BADERTDINOVA ◽  

Research of magnetoelectric effects and multiferroic materials, in which these effects are manifested, is among key areas in modern magnetism. This is associated with promising aspects of applying the results to spintronics, orbitronics, and new generation systems for information storage and processing. Despite a great many of already known materials which, in varying degrees, have magnetoelectric properties, the question regarding physical mechanisms and nature of magnetoelectric effects still remains open. Single-phase multiferroics with their magnetic and segnetoelectric properties implemented in a single crystalline phase are of especially great interest for studying. The most known "traditional multiferroics", such as bismuth ferrite, manganites, rare earthearth orthoferrites and orthochromites, fall into the class of perovskite multiferroics, i.e. the crystalline structure of ABO3 perovskites serve as their pre-phase. However, the difference between crystallographic distortions that results in the formation of various crystalline structures, for example, bismuth ferrite and rare-earth orthoferrites/orthochromites, leads to an essential difference in their physical properties, including magnetoelectric ones. Whereas bismuth ferrite characterized by the R3c symmetry space group is a segnetoelectric (i.e. it has spontaneous segnetoelectric polarization), the presence of segnetoelectric polarization in orthoferrites/orthochromites with the Pbnm symmetry space group is impossible from the symmetry standpoint. However, recent experimental and theoretical research works show that under certain conditions magnetoelectric properties are found in both classes of the said multiferroics. This paper is an overview by its nature and discusses magnetoelectric effects in various classes of single-phase multiferroics with the distorted perovskite structure: proper multiferroics exemplified by bismuth ferrite and improper multiferroics exemplified by rare-earth orthoferrites/orthochromites. Consideration is given to basic principles of the symmetry approach used to study magnetoelectric effects in multiferroics; calculations and analysis of magnetoelectric effects in rare-earth orthoferrites/orthochromites are performed through the methods of group-theoretical analysis.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 286
Author(s):  
Luca Bindi ◽  
Marta Morana

Spryite (Ag7.98Cu0.05)Σ=8.03(As5+0.31Ge0.36As3+0.31Fe3+0.02)Σ=1.00S5.97, and ideally Ag8(As3+0.5As5+0.5)S6, is a new mineral recently described from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. Its room temperature structure exhibits an orthorhombic symmetry, space group Pna21, with lattice parameters a = 14.984(4), b = 7.474(1), c = 10.571(2) Å, V = 1083.9(4) Å3, Z = 4, and shows the coexistence of As3+ and As5+ distributed in a disordered fashion in a unique mixed position. To analyze the crystal-chemical behaviour of the arsenic distribution at ultra-low temperatures, a structural study was carried out at 30 K by means of in situ single-crystal X-ray diffraction data (helium-cryostat) on the same sample previously characterized from a chemical and structural point of view. At 30 K, spryite still crystallizes with orthorhombic symmetry, space group Pna21, but gives rise to a a × 3b × c superstructure, with a = 14.866(2), b = 22.240(4), c = 10.394(1) Å, V = 3436.5(8) Å3 and Z = 4 (Ag24As3+As5+Ge4+S18 stoichiometry). The twin laws making the twin lattice simulating a perfect hexagonal symmetry have been taken into account and the crystal structure has been solved and refined. The refinement of the structure leads to a residual factor R = 0.0329 for 4070 independent observed reflections [with Fo > 4σ(Fo)] and 408 variables. The threefold superstructure arises from the ordering of As3+ and (As5+, Ge4+) in different crystal-chemical environments.


Proceedings ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 4
Author(s):  
Hadj Bellagra ◽  
Oksana Nyhmatullina ◽  
Yuri Kogut ◽  
Halyna Myronchuk ◽  
Lyudmyla Piskach

Quaternary semiconductor materials of the Pb4Ga4GeS(Se)12 composition have attracted the attention of researchers due to their possible use as active elements of optoelectronics and nonlinear optics. The Pb4Ga4GeS(Se)12 phases belong to the solid solution ranges of the Pb3Ga2GeS(Se)8 compounds which form in the quasi-ternary systems PbS(Se)−Ga2S(Se)3−GeS(Se)2 at the cross of the PbGa2S(Se)4−Pb2GeS(Se)4 and PbS(Se)−PbGa2GeS(Se)6 sections. The quaternary sulfide melts congruently at 943 K. The crystallization of the Pb4Ga4GeSe12 phase is associated with the ternary peritectic process Lp + PbSe ↔ PbGa2S4 + Pb3Ga2GeSe8 at 868 K. For the single crystal studies, Pb4Ga4GeS(Se)12 were pre-synthesized by co-melting high-purity elements. The X-ray diffraction results confirm that these compounds possess non-centrosymmetric crystal structure (tetragonal symmetry, space group P–421c). The crystals were grown by the vertical Bridgman method in a two-zone furnace. The starting composition was stoichiometric for Pb4Ga4GeS12, and the solution-melt method was used for the selenide Pb4Ga4GeSe12. The obtained value of the bandgap energy for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals is 1.86 and 2.28 eV, respectively. Experimental measurements of the spectral distribution of photoconductivity for the Pb4Ga4GeS12 and Pb4Ga4GeSe12 crystals exhibit the presence of two spectral maxima. The first lies in the region of 570 (2.17 eV) and 680 nm (1.82 eV), respectively, and matches the optical bandgap estimates well. The locations of the admixture maxima at about 1030 (1.20 eV) and 1340 nm (0.92 eV), respectively, agree satisfactorily with the calculated energy positions of the defects vs. and VSe.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
S. Shari ◽  
K.B. Tan ◽  
C.C. Khaw ◽  
Z. Zainal ◽  
O.J. Lee ◽  
...  

AbstractLithium tantalate solid solution, Li3+5xTa1−xO4 was prepared by conventional solid-state reaction at 925 °C for 48 h. The XRD analysis confirmed that these materials crystallized in a monoclinic symmetry, space group C2/C and Z = 8, which was similar to the reported International Crystal Database (ICDD), No. 98-006-7675. The host structure, β-Li3TaO4 had a rock-salt structure with a cationic order of Li+:Ta5+ = 3:1 over the octahedral sites. A rather narrow subsolidus solution range, i.e. Li3+5xTa1−xO4 (0 ⩽ x ⩽ 0.059) was determined and the formation mechanism was proposed as a replacement of Ta5+ by excessive Li+, i.e. Ta5+ ↔ 5Li+. Both Scherrer and Williamson-Hall (W-H) methods indicated the average crystallite sizes in the range of 31 nm to 51 nm. Two secondary phases, Li4TaO4:5 and LiTaO3 were observed at x = 0.070 and x = −0:013, respectively. These materials were moderate lithium ionic conductors with the highest conductivity of ~2.5 × 10−3 Ω 1 ˙cm−1 at x = 0, at 0 °C and 850 °C; the activation energies were found in the range of 0.63 eV to 0.68 eV.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 494
Author(s):  
Julia Sordyl ◽  
Bartosz Puzio ◽  
Maciej Manecki ◽  
Olaf Borkiewicz ◽  
Justyna Topolska ◽  
...  

Five lead-arsenate apatites (mimetites)-Pb5(AsO4)3X—where X denotes fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and hydroxide (OH)—were synthesized via precipitation from aqueous solutions. The crystal structures were determined through Rietveld refinement of powder synchrotron X-ray data. All the compounds crystallized in the hexagonal class symmetry (space group P63/m). The Rietveld refinement indicated that mimetite-Cl, -Br, -I, and -OH had an anion deficiency at position X. Substitution of halogens in a mimetite structure brought about systematic changes in unit-cell parameters, interatomic distances, and metaprism twist angles φ, proportional to the substituted halogen’s ionic radius. Mimetite-OH did not follow the linear correlations determined within the series. Twist angle φ, a useful device for monitoring changes in apatite topology, ranged from 20.34° for mimetite-F to 11.42° for mimetite-I. The geometric method has been proposed for determining the diameter of hexagonal channels hosting halogens in apatites. A comparison of the results with halogenated pyromorphites showed similar systematic trends: the substitutions in mimetites have comparable effect on the interatomic distances as in their phosphorous analogues.


2020 ◽  
Vol 76 (4) ◽  
pp. 322-327
Author(s):  
Emmanuel Blas Patricio-Rangel ◽  
Margarita Tlahuextl ◽  
Hugo Tlahuext ◽  
Antonio Rafael Tapia-Benavides

The synthesis and characterization of two new 1,3,5-triazines containing 2-(aminomethyl)-1H-benzimidazole hydrochloride as a substituent are reported, namely, 2-{[(4,6-dichloro-1,3,5-triazin-2-yl)amino]methyl}-1H-benzimidazol-3-ium chloride, C11H9Cl2N6 +·Cl− (1), and bis(2,2′-{[(6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl)]bis(methylene)}bis(1H-benzimidazol-3-ium)) tetrachloride heptahydrate, 2C19H18ClN9 2+·4Cl−·7H2O (2). Both salts were characterized using single-crystal X-ray diffraction analysis and IR spectroscopy. Moreover, the NMR (1H and 13C) spectra of 1 were obtained. Salts 1 and 2 have triclinic symmetry (space group P-1) and their supramolecular structures are stabilized by hydrogen bonding and offset π–π interactions. In hydrated salt 2, the noncovalent interactions yield pseudo-nanotubes filled with chloride anions and water molecules, which were modelled in the refinement with substitutional and positional disorder.


2020 ◽  
Vol 76 (3) ◽  
pp. 302-310
Author(s):  
Gordon J. Lockbaum ◽  
Florian Leidner ◽  
William E. Royer ◽  
Nese Kurt Yilmaz ◽  
Celia A. Schiffer

Twinning is a crystal-growth anomaly in which protein monomers exist in different orientations but are related in a specific way, causing diffraction reflections to overlap. Twinning imposes additional symmetry on the data, often leading to the assignment of a higher symmetry space group. Specifically, in merohedral twinning, reflections from each monomer overlap and require a twin law to model unique structural data from overlapping reflections. Neglecting twinning in the crystallographic analysis of quasi-rotationally symmetric homo-oligomeric protein structures can mask the degree of structural non-identity between monomers. In particular, any deviations from perfect symmetry will be lost if higher than appropriate symmetry is applied during crystallographic analysis. Such cases warrant choosing between the highest symmetry space group possible or determining whether the monomers have distinguishable structural asymmetries and thus require a lower symmetry space group and a twin law. Using hexagonal cocrystals of HIV-1 protease, a C 2-symmetric homodimer whose symmetry is broken by bound ligand, it is shown that both assigning a lower symmetry space group and applying a twin law during refinement are critical to achieving a structural model that more accurately fits the electron density. By re-analyzing three recently published HIV-1 protease structures, improvements in nearly every crystallographic metric are demonstrated. Most importantly, a procedure is demonstrated where the inhibitor can be reliably modeled in a single orientation. This protocol may be applicable to many other homo-oligomers in the PDB.


2019 ◽  
Vol 234 (11-12) ◽  
pp. 697-705 ◽  
Author(s):  
Hamdi Ben Yahia

AbstractThe new polymorph of Na2Mn3(SO4)4 was prepared via solid state reaction route in a powder form and its crystals were grown by self-flux method. The crystal structure was determined from single crystal X-ray diffraction data. This polymorph crystallizes with an orthorhombic symmetry, space group Pbca, with a = 9.8313(4), b = 8.7467(3), c = 29.6004(11) Å, V = 2545.38(17) Å3, Z = 8. Its structure refinement yielded the residual factors R(F) = 0.025 and wR(F2) = 0.065 for 227 parameters and 2605 independent reflections at 2σ(I) level. The use of group-subgroup schemes in the Bärnighausen formalism enabled an accurate comparison of the Pbca- and Cmc 21-polymorphs of Na2Mn3(SO4)4. Both polymorphs contain similar [Mn3(SO4)4]2− building blocks formed of Mn2O11 dimer units and MnO5 trigonal pyramids that are interconnected by sharing corners with the SO4 tetrahedra. However, the stacking of these building blocks along the longest axes of the Pbca- and Cmc 21-structures is different. This induces differences in the coordination of the sodium atoms and in the orientation of the SO4 tetrahedra.


2019 ◽  
Vol 74 (9) ◽  
pp. 677-684
Author(s):  
Hamdi Ben Yahia ◽  
Masahiro Shikano

AbstractThe new members of the Ag2−xNaxMn3(VO4)3 (0 ≤ x ≤ 2) solid solution were synthesized by a solid-state reaction route. The crystal structures of Ag1.38Na0.62Mn3(VO4)3 (x = 0.62) and Ag0.15Na1.85Mn3(VO4)3 (x = 1.85) were solved using single crystal X-ray diffraction. These phases crystallize with a monoclinic symmetry (space group C2/c), and their structures are new members of the well-known alluaudite family. In both compounds, the Ag+/Na+, Mn2+/Mn3+ and V5+ cations are eight-, six-, and four-coordinated to oxygen atoms, respectively. All the atoms are perfectly ordered except for the Ag and Na atoms which are statistically disordered over a 4b and a 4e atomic position. This single-crystal structural study confirms the existence of a full solid solution Ag2−xNaxMn3(VO4)3 (0 ≤ x ≤ 1.85).


Sign in / Sign up

Export Citation Format

Share Document