Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone

2015 ◽  
Vol 79 (3) ◽  
pp. 537-544 ◽  
Author(s):  
Adam J. Roper ◽  
Peter Leverett ◽  
Timothy D. Murphy ◽  
Peter A. Williams

AbstractIn order to clarify the roles that secondary minerals may have in determining the extent of dispersion of Sb in the supergene environment, syntheses and stability studies of the Sb(V) oxides byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, have been undertaken. Solubilities in aqueous HNO3 were determined at 298.2 K and the data obtained used to calculate values of Δ at the same temperature. The derived Δ(s, 298.2 K) values for MgSb2O6 (–1554.1 ±3.6 kJ mol–1), ZnSb2O6 (–1257.0 ±2.6 kJ mol–1) and PbSb2O6 (–1154.2 ±2.6 kJ mol–1) have been used in subsequent calculations to determine their relative stabilities and relationships with other secondary Sb minerals.

2017 ◽  
Vol 14 (4) ◽  
pp. 224
Author(s):  
Adam J. Roper ◽  
Peter Leverett ◽  
Timothy D. Murphy ◽  
Peter A. Williams

Environmental contextThe dispersion of antimony in the environment has been misunderstood over the last few decades. Investigating the solubility of naturally forming mineral phases such as nadorite resulted in determination of its limited role in Sb dispersion, providing evidence that nadorite can only limit antimony dispersion in mildly oxidising conditions. Nadorite can only play a significant role in Sb immobilisation in a particular redox window, which forms only a minor part of the framework of Sb dispersion. AbstractAs part of a study of the control that secondary minerals exert on the dispersion of antimony and bismuth in the supergene environment, syntheses and stability studies of nadorite (PbSbO2Cl) and perite (PbBiO2Cl) have been undertaken. Solubilities in aqueous HNO3 were determined at 298.2K and the data obtained used to calculate values of ΔGfθ(298.2K). The ΔGfθ(s, 298.2K) values for PbSbO2Cl (–622.0±2.8kJmol–1) and PbBiO2Cl (–590.0±1.3kJmol–1) have been used in subsequent calculations to determine relative stabilities and relationships with other common secondary Sb and Bi minerals. While the role of nadorite in immobilising Sb is dependent upon the prevailing redox potential such that SbIII is stable, perite may be a significant phase in limiting the dispersion of Bi in certain supergene settings.


2012 ◽  
Vol 76 (4) ◽  
pp. 891-902 ◽  
Author(s):  
P. Leverett ◽  
J. K. Reynolds ◽  
A. J. Roper ◽  
P. A. Williams

AbstractStudies of the stability of the oxides schafarzikite, FeSb2O4, and tripuhyite, FeSbO4, have been undertaken to clarify the roles these secondary minerals may have in determining the dispersion of antimony in oxidizing environments. Solubilities were determined at 298.15 K in aqueous HNO3, and these data were used to calculate values of ΔGfϴ at the same temperature. The derived Δ Gfϴ (s, 298.15 K) values for FeSb2O4 and FeSbO4 are – 959.4±4.3 and – 836.8±2.2 kJ mol–1, respectively. These results have been compared with electrochemically derived data, extrapolated from 771–981 K. The present study shows conclusively that although the mobility of Sb above the water table is limited by simple Sb(III) and Sb(V) oxides and stibiconite-group minerals, depending upon the prevailing redox potential and pH, tripuhyite is an important ultimate sink for Sb in the supergene environment. It is highly insoluble even in strongly acidic conditions and its anomalous stability at ambient temperatures causes the common mineral goethite, FeOOH, to react to form tripuhyite at activities of Sb(OH)5(aq) as low as 10–11. The comparatively limited numbers of reported occurrences of tripuhyite in the supergene zone are almost certainly due to the fact that its physical properties, especially colour and habit, are remarkably similar to those of goethite. In contrast, the small number of reported occurrences of schafarzikite can be related to its decomposition to tripuhyite as redox potentials rise at the top of the supergene zone and the fact that it decomposes to sénarmontite, Sb2O3, in acidic conditions, releasing Fe2+ ions into solution. In general, the findings confirm the immobility of Sb in near-surface conditions. Geochemical settings favouring the formation of the above minerals have been assessed using the results of the present study and data from the literature.


2021 ◽  
Vol 129 (9) ◽  
pp. 093303
Author(s):  
Ganesh Subramanian P. S. ◽  
Ananthanarasimhan J. ◽  
Leelesh P. ◽  
Harsha Rao ◽  
Anand M. Shivapuji ◽  
...  

2021 ◽  
Vol 173 ◽  
pp. 267-276
Author(s):  
Hidayat Ullah ◽  
Sidra Pervez ◽  
Shehzad Ahmed ◽  
Kashif Syed Haleem ◽  
Sadia Qayyum ◽  
...  
Keyword(s):  

Author(s):  
Mark V. Khenkin ◽  
Anoop K.M. ◽  
Iris Visoly-Fisher ◽  
Francesco Di Giacomo ◽  
Ilker Dogan ◽  
...  
Keyword(s):  

1987 ◽  
Vol IA-23 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Wei-Jen Lee ◽  
Mo-Shing Chen ◽  
Lucas B. Williams
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document