Redefinition of thérèsemagnanite, NaCo4(SO4)(OH)6Cl·6H2O: new data and relationship to ‘cobaltogordaite’

2018 ◽  
Vol 82 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Anatoly V. Kasatkin ◽  
Jakub Plášil ◽  
Radek Škoda ◽  
Dmitriy I. Belakovskiy ◽  
Joe Marty ◽  
...  

ABSTRACTThérèsemagnanite was originally described from the Cap Garonne mine, Var, France. Its ideal formula was reported as (Co,Zn,Ni)6(SO4)(OH,Cl)10·8H2O; without crystal structure data, only the powder X-ray diffraction pattern was given. Revision of the holotype material revealed that thérèsemagnanite is identical to ‘cobaltogordaite’ (IMA2014-043), recently described from the Blue Lizard mine, Utah, USA. Thérèsemagnanite is thus redefined in accordance with the new data obtained for the neotype specimen from Blue Lizard (formerly the holotype specimen of ‘cobaltogordaite’) and ‘cobaltogordaite’ has been discredited by the International Mineralogical Association Commission on New Mineral Nomenclature and Classification (IMA CNMNC). Thérèsemagnanite has the ideal, end-member formula NaCo4(SO4)(OH)6Cl·6H2O. The empirical formulae of the holotype (Cap Garonne) and the neotype (Blue Lizard), both based on microprobe analyses and calculated on the basis of 17 O + Cl atoms per formula unit (with fixed 6 OH groups and 6 H2O molecules; H content is calculated by stoichiometry) are (Na0.64K0.09)Σ0.73(Co2.35Zn1.22Ni0.50)Σ4.07S1.02O3.98(OH)6Cl1.02·6H2O and Na1.01(Co1.90Zn1.37Ni0.48Cu0.15Mn0.05)Σ3.95S1.03O4.09(OH)6Cl0.91·6H2O, respectively. Thérèsemagnanite is trigonal,P$\overline 3 $,a= 8.349(3),c= 13.031(2) Å,V= 786.6(4) Å3and Z = 2 (neotype). The strongest powder X-ray diffraction lines are [dobsin Å (hkl) (Irel)]: 13.10 (001)(100), 6.53 (002)(8), 4.173 (110)(4), 3.517 (112)(5), 2.975 (104, 10$\overline 4 $)(4), 2.676 (211)(5) and 2.520 (12$\bar 2$)(5) (neotype). Thérèsemagnanite is a cobalt analogue of gordaite, NaZn4(SO4)(OH)6Cl·6H2O. These minerals represent the gordaite group, accepted by the IMA CNMNC.

Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 467 ◽  
Author(s):  
Luca Bindi ◽  
John A. Jaszczak

The new mineral richardsite occurs as overgrowths of small (50–400 μm) dark gray, disphenoidal crystals with no evident twinning, but epitaxically oriented on wurtzite–sphalerite crystals from the gem mines near Merelani, Lelatema Mountains, Simanjiro District, Manyara Region, Tanzania. Associated minerals also include graphite, diopside, and Ge,Ga-rich wurtzite. It is brittle, dark gray in color, and has a metallic luster. It appears dark bluish gray in reflected plane-polarized light, and is moderately bireflectant. It is distinctly anisotropic with violet to light-blue rotation tints with crossed polarizers. Reflectance percentages for Rmin and Rmax in air at the respective wavelengths are 23.5, 25.0 (471.1 nm); 27.4, 28.9 (548.3 nm); 28.1, 29.4 (586.6 nm); 27.7, 28.9 (652.3 nm). Richardsite does not show pleochroism, internal reflections, or optical indications of growth zonation. Electron microprobe analyses determine an empirical formula, based on 8 apfu, as (Zn1.975Cu0.995Ga0.995Fe0.025Mn0.010Ge0.005Sn0.005)Σ4.010S3.990, while its simplified formula is (Zn,Cu)2(Cu,Fe,Mn)(Ga,Ge,Sn)S4, and the ideal formula is Zn2CuGaS4. The crystal structure of richardsite was investigated using single-crystal and powder X-ray diffraction. It is tetragonal, with a = 5.3626(2) Å, c = 10.5873(5) Å, V = 304.46(2) Å3, Z = 2, and a calculated density of 4.278 g·cm−3. The four most intense X-ray powder diffraction lines [d in Å (I/I0)] are 3.084 (100); 1.882 (40); 1.989 (20); 1.614 (20). The refined crystal structure (R1 = 0.0284 for 655 reflections) and obtained chemical formula indicate that richardsite is a new member of the stannite group with space group I 4 ¯ 2 m . Its structure consists of a ccp array of sulfur atoms tetrahedrally bonded with metal atoms occupying one-half of the ccp tetrahedral voids. The ordering of the metal atoms leads to a sphalerite(sph)-derivative tetragonal unit-cell, with a ≈ asph and c ≈ 2asph. The packing of S atoms slightly deviates from the ideal, mainly due to the presence of Ga. Using 632.8-nm wavelength laser excitation, the most intense Raman response is a narrow peak at 309 cm−1, with other relatively strong bands at 276, 350, and 366 cm−1, and broader and weaker bands at 172, 676, and 722 cm−1. Richardsite is named in honor of Dr. R. Peter Richards in recognition of his extensive research and writing on topics related to understanding the genesis of the morphology of minerals. Its status as a new mineral and its name have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2019-136).


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2017 ◽  
Vol 81 (2) ◽  
pp. 369-381 ◽  
Author(s):  
F. Cámara ◽  
E. Sokolova ◽  
Y. A. Abdu ◽  
F. C. Hawthorne ◽  
T. Charrier ◽  
...  

AbstractFogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, is a new mineral from the Lagoa do Fogo, São Miguel Island, the Azores. It occurs in cavities as highly elongated (on [001]) prisms, up to 2000 μm long and 50 μm× 50 μm in cross-section, associated with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz and ferro-katophorite. Crystals are generally transparent and colourless, with vitreous lustre, occasionally creamy white. Fogoite-(Y) has a white streak, splintery fracture and very good {100} cleavage. Mohs hardness is ∼5. Dcalc. = 3.523 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.686(2), β = 1.690(2), γ = 1.702(5); 2Vmeas. = 57(1)° and 2Vcalc. = 60°. It is nonpleochroic. Fogoite-(Y) is triclinic, space group P1, a = 9.575(6), b = 5.685(4), c = 7.279(5) Å, α = 89.985(6), β = 100.933(4), γ = 101.300(5)°, V = 381.2 (7) Å3. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 2.954, 100, (1̄1̄2, 3̄10); 3.069, 42, (300, 01̄2); 2.486, 24, (310, 21̄2); 3.960, 23, (1̄1̄1, 2̄10); 2.626, 21, (2̄20); 1.820, 20, (1̄04). Electron microprobe analysis gave the following empirical formula calculated on 18 (O + F) (Na2.74Mn0.15)∑2.89Ca2[Y1.21(La0.01Ce0.03Nd0.03Sm0.02Gd0.08Dy0.08Er0.05Yb0.04Lu0.01)∑0.35Mn0.16Zr0.11Na0.09Fe0.072+Ca0.01]∑2(Ti0.76Nb0.23Ta0.01)∑1(Si4.03O14)O1.12F2.88, Z = 1. The crystal structure was refined on a twinnedcrystal to R1 = 2.81% on the basis of 2157 unique reflections (Fo > 4σFo) and is a framework of TS (Titanium Silicate) blocks, which consist of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the the [6]MO(1) site is occupied mainly by Ti, <MO(1)–ϕ> = 1.980 Å, and the [6]MO(2) and [6]MO(3) sites are occupied by Na and Na plus minor Mn, <MO(2)–ϕ>= 2.490 Å and <MO(3)–ϕ> = 2.378 Å. In the H sheet, the two [4]Si sites are occupied by Si, with <Si–O> = 1.623 Å; the [6]MH site is occupied by Y and rare-earth elements (Y > REE), with minor Mn, Zr, Na, Fe2+ and Ca, <MH–ϕ> = 2.271 Å and the [6]AP site is occupied by Ca, <AP–ϕ> = 2.416 Å. The MH and AP octahedra and Si2O7 groups constitute the H sheet. The ideal compositions of the O and two H sheets are Na3Ti(OF)F2 and Y2Ca2(Si2O7)2 apfu. Fogoite-(Y) is isostructural with götzenite and hainite. The mineral is named after the type locality, the Fogo volcano in the Azores.


1998 ◽  
Vol 62 (2) ◽  
pp. 257-264 ◽  
Author(s):  
W. H. Paar ◽  
A. C. Roberts ◽  
A. J. Criddle ◽  
D. Topa

AbstractChrisstanleyite, Ag2Pd3Se4, is a new mineral from gold-bearing carbonate veins in Middle Devonian limestones at Hope's Nose, Torquay, Devon, England. It is associated with palladian and argentian gold, fischesserite, clausthalite, eucairite, tiemannite, umangite, a Pd arsenide-antimonide (possibly mertieite II), cerussite, calcite and bromian chlorargyrite. Also present in the assemblage is a phase similar to oosterboschite, and two unknown minerals with the compositions, PdSe2 and HgPd2Se3. Chrisstanleyite occurs as composite grains of anhedral crystals ranging from a few µm to several hundred µm in size. It is opaque, has a metallic lustre and a black streak, VHN100 ranges from 371–421, mean 395 kp/mm2 (15 indentations), roughly approximating to a Mohs hardness of 5. Dcalc = 8.308 g/cm3 for the ideal formula with Z = 2. In plane-polarised reflected light, the mineral is very slightly pleochroic from very light buff to slightly grey-green buff; is weakly bireflectant and has no internal reflections. Bireflectance is weak to moderate (higher in oil). Anisotropy is moderate and rotation tints vary from rose-brown to grey-green to pale bluish grey to dark steel-blue. Polysynthetic twinning is characteristic of the mineral. Reflectance spectra and colour values are tabulated. Very little variation was noted in eleven electron-microprobe analyses on five grains, the mean is: Ag 25.3, Cu 0.17, Pd 37.5, Se 36.4, total 99.37 wt.%. The empirical formula (on the basis of ∑M + Se = 9) is (Ag2.01Cu0.02)∑2.03 Pd3.02Se3.95, ideally Ag2Pd3Se4. Chrisstanleyite is monoclinic, a 6.350(6), b 10.387(4), c 5.683(3) Å β 114.90(5)°, space group P21/m (11) or P21(4). The five strongest X-ray powder-diffraction lines [d in Å (I)(hkl)] are: 2.742 (100) (–121), 2.688 (80) (–221), 2.367 (50) (140), 1.956 (100) (–321,150) and 1.829 (30) (–321, 042). The name is in honour of Dr Chris J. Stanley of The Natural History Museum in London. The mineral and its name have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.


Author(s):  
E. Jäger ◽  
E. Niggli ◽  
A. H. Van der Veen

SummaryA hydrated barium-strontium pyrochlore with only subordinate amounts of Ca and Na has been found in a weathered biotite rock (contact-rock of a carbonatite) from Panda Hill, Tanganyika, as small euhedral yellowish-grey cubic crystals (showing the combination of the octahedron and the cube) in a rock containing euhedral biotite, some orthoclase, and several other minerals. Hydrated Ba-Sr pyrochlore is isotropic, the refractive index varies from 2·07 to 2·10. The reflectivity (vertical illumination) is 13·2 %. H. Poor {111} cleavage. The pyrochlore structure (space-group O7h–Fd3m) and the unit-cell dimensions (a 10·562 Å.) are derived from X-ray powder and Weissenberg photographs. The calculated specific gravity is 4·01 (observed, 4·00 on dried material). Chemical analysis gives BaO 12·5, SrO 6·4, Na2O 0·28, K2O 0·25, CaO 1·35, rare earths (mainly Ce2O3) 2, ThO2 0·6, FeO 0·45, TiO2 3·9, Nb2O5 67·0, Ta2O5 0·22, H2O+ 4·0, other constituents 2·21, total 101·16. After deduction for impurities the following formula resulted: (Ba0·30Sr0·22Ca0·05Ce0·04Na0·03Fe0·02K0·01Th0·01)(Nb1·83Ta0·004Ti0·17)O5·61(H2O)0·80.The ideal formula for pyrochlore is A2B2O6(F,OH). In the mineral described only a third of the A-positions are occupied by Ba, Sr, etc. Infra-red spectrophotometry does not indicate hydroxyl-groups. When the mineral is treated with TINO3 solution the intensities of the X-ray diffraction lines 333/511, and 444 are changed; hydrated Ba-Sr pyrochlore shows a certain exchange-capacity.The name pandaite, from Panda Hill, is proposed for the new mineral.


2018 ◽  
Vol 82 (5) ◽  
pp. 1131-1139
Author(s):  
Henrik Friis

ABSTRACTTombarthite-(Y) is discredited as a mineral species. No type material was available, but material used for the original description has been located and neotype material defined. The main reason for the erroneous description of tombarthite-(Y) is the result of chemical analyses being carried out on heated material, which removed elements such as C and F. New semi-quantitative chemical analyses show that at least F is present in the fresh material, but absent after a heating scheme identical to that of the original description. Modern powder X-ray diffraction methods (XRD) confirm that the material identified as tombarthite-(Y) is a mixture of metamict and crystalline phases. Consequently, what was known as tombarthite-(Y) is not a mixture of the same minerals in equal amounts in different samples, but mixtures of various minerals depending on the sample. The main minerals identified are thalénite-(Y), xenotime-(Y) and kainosite-(Y). The discreditation of tombarthite-(Y) relies on new analyses of a large number of samples from the collection of the Natural History Museum (NHM) in Oslo and has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (proposal 16-K).


2012 ◽  
Vol 76 (3) ◽  
pp. 673-682 ◽  
Author(s):  
I. V. Pekov ◽  
M. E. Zelenski ◽  
N. V. Zubkova ◽  
V. O. Yapaskurt ◽  
N. V. Chukanov ◽  
...  

AbstractThe new mineral calciolangbeinite, ideally K2Ca2(SO4)3, is the Ca-dominant analogue of langbeinite. It occurs in sublimates at the Yadovitaya fumarole on the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure eruption, Tolbachik volcano, Kamchatka, Russia. The mineral is associated with langbeinite, piypite, hematite, rutile, pseudobrookite, orthoclase, lyonsite, lammerite, cyanochroite and chlorothionite. Calciolangbeinite occurs as tetrahedral to pseudooctahedral crystals, which are bounded by {111} and {111̄}, and as anhedral grains up to 1 mm in size, aggregated into clusters up to 2 mm across, and forming crusts covering areas of up to 1.5x1.5 cm on the surface of volcanic scoria. Late-stage calciolangbeinite occurs in complex epitaxial intergrowths with langbeinite. Calciolangbeinite is transparent and colourless with white streak and vitreous lustre. Its Mohs' hardness is 3–3½. It is brittle, has a conchoidal fracture and no obvious cleavage. The measured and calculated densities are Dmeas = 2.68(2) and Dcalc = 2.74 g cm–3, respectively. Calciolangbeinite is optically isotropic with n = 1.527(2). The chemical composition of the holotype specimen is Na2O 0.38, K2O 21.85, MgO 6.52, CaO 16.00, MnO 0.27, FeO 0.08, Al2O3 0.09, SO3 55.14, total 100.63 wt.%. The empirical formula, calculated on the basis of twelve oxygen atoms per formula unit, is K2.01(Ca1.24Mg0.70Na0.05Mn0.02Fe0.01Al0.01)S 2.03S3.00O12. Calciolangbeinite is cubic, space group P213, a = 10.1887(4) Å, V = 1057.68(4) Å3 and Z = 4. The strongest reflections in the X-ray powder pattern [listed as (d, Å (I)(hkl)] are 5.84(8)(111); 4.54(9)(120); 4.15(27)(211); 3.218 (100) (310, 130); 2.838 (8) (230, 320), 2.736 (37) (231, 321), 2.006 (11) (431, 341) , 1.658(8)(611,532,352). The crystal structure was refined from single-crystal X-ray diffraction data to R = 0.0447. The structure is based on the langbeinite-type three-dimensional complex framework, which is made up of (Ca,Mg)O6 octahedra (Ca and Mg are disordered) and SO4 tetrahedra. Potassium atoms occupy two sites in voids in the framework; K(1) cations are located in ninefold polyhedra whereas K(2) cations are sited in significantly distorted octahedra. Calciolangbeinite and langbeinite are isostructural and form a solid-solution series.


2020 ◽  
Vol 84 (3) ◽  
pp. 444-454 ◽  
Author(s):  
Anatoly V. Kasatkin ◽  
Sergey N. Britvin ◽  
Igor S. Peretyazhko ◽  
Nikita V. Chukanov ◽  
Radek Škoda ◽  
...  

AbstractOxybismutomicrolite, ideally [(Bi3+,#)2]Σ4+Ta2O6O, where # = subordinate substituents, such as Na+, Ca2+ and vacancy (□), is a microlite-group, pyrochlore-supergroup mineral discovered at the Solnechnaya (‘Sunny’) pegmatite vein, Malkhan pegmatite field, Zabaykalskiy Kray, Central Transbaikalia, Russia. It forms rough octahedral crystals up to 1 mm across and equant grains up to 2 mm across embedded in an albite–lepidolite–elbaite complex. Other associated minerals are Bi-rich fluornatromicrolite, bismutotantalite and stibiotantalite. The new mineral is black, with resinous lustre; the streak is greyish white. It is non-fluorescent under ultraviolet light. Oxybismutomicrolite is brittle, with Mohs’ hardness of ~5. Cleavage is not observed, fracture is uneven. Dmeas. = 6.98(2) g/cm3 and Dcalc. = 7.056 g/cm3. The mineral is optically isotropic. The mean refractive index calculated from the Gladstone–Dale equation is 2.184. The infrared spectrum shows the absence of H2O molecules and OH groups. The chemical composition is (electron microprobe, wt.%): Na2O 3.45, CaO 2.88, MnO 0.31, PbO 0.76, Bi2O3 29.81, ThO2 0.18, TiO2 3.89, SnO2 1.77, Nb2O5 4.50, Ta2O5 51.08, F 1.17, O = F –0.49, total 99.31. The empirical formula, on the basis of 2 cations at the B site, is (Bi0.79Na0.68Ca0.32Mn0.03Pb0.02□0.16)Σ2.00(Ta1.42Ti0.30Nb0.21Sn0.07)Σ2.00O6.00(O0.52F0.38□0.10)Σ1.00. The crystal structure refinement (R = 0.019) gave the following data: cubic, Fd–3m, a = 10.4746(11) Å, V = 1149.2(4) Å3 and Z = 8. The eight strongest lines of the powder X-ray diffraction pattern [d, Å(I, %)(hkl)] are: 6.051(12)(111), 3.160(10)(311), 3.026(100)(222), 2.621(32)(400), 1.854(33)(440), 1.581(27)(622), 1.514(7)(444) and 1.203(7)(662). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 5409/1.


2021 ◽  
Vol 33 (2) ◽  
pp. 175-187
Author(s):  
Pavel Škácha ◽  
Jiří Sejkora ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract. The new mineral grimmite, NiCo2S4, was found in siderite–sphalerite gangue at the dump of shaft no. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. The new mineral occurs as rare idiomorphic to hypidiomorphic grains up to 200  µm × 70 µm in size or veinlet aggregates. In reflected light, grimmite is creamy grey with a pinkish tint. Pleochroism, polarising colours and internal reflections were not observed. Reflectance values of grimmite in the air (R %) are 42.5 at 470 nm, 45.9 at 546 nm, 47.7 at 589 nm and 50.2 at 650 nm). The empirical formula for grimmite, based on electron-microprobe analyses (n= 13), is Ni1.01(Co1.99Fe0.06Pb0.01Bi0.01)Σ2.07S3.92. The ideal formula is NiCo2S4; requires Ni 19.26, Co 38.67, and S 42.07; and totals 100.00 wt %. According to the single-crystal X-ray diffraction data (Robs=0.0489), grimmite is cubic, Fd–3m, a=9.3933(9), with V=828.81(14) Å3 and Z=8. The calculated density is 4.96 g cm−3. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are 3.3210 (75) (220), 2.7116 (7) (222), 2.3483 (81) (400), 1.9174 (27) (422), 1.6605 (100) (440), 1.4852 (11) (620) and 1.3558 (15) (444). Grimmite is named after Johann Grimm (24 June or 24 July 1805 to 26 June 1874), the former director of the Příbram Mining College. The association of sulfides and sulfarsenides was found with grimmite. Essentially non-zoned coarse-grained siderite encloses idiomorphic crystals and/or aggregates of red sphalerite I and zoned skutterudite-group minerals. Skutterudites (skutterudite, niklskutterudite and ferroskutterudite) are usually strongly corroded and replaced by younger phases. Relics of skutterudite are rimmed by nickeline and later on by gersdorffite with rare domains of glaucodot and arsenopyrite, whereas completely leached parts of skutterudite crystals are filled up by quartz containing small isolated grains and aggregates of pyrite, sphalerite II, grimmite, galena, ullmannite, bismuthinite, parkerite and jaipurite, the latter being rarely enclosed in grimmite.


Sign in / Sign up

Export Citation Format

Share Document