scholarly journals Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors

Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1734-1743 ◽  
Author(s):  
Marinee K. L. Chuah ◽  
Gudrun Schiedner ◽  
Lieven Thorrez ◽  
Brian Brown ◽  
Marion Johnston ◽  
...  

High-capacity adenoviral (HC-Ad) vectors expressing B-domain–deleted human or canine factor VIII from different liver-specific promoters were evaluated for gene therapy of hemophilia A. Intravenous administration of these vectors into hemophilic FVIII-deficient immunodeficient SCID mice (FVIIIKO-SCID) at a dose of 5 × 109 infectious units (IU) resulted in efficient hepatic gene delivery and long-term expression of supraphysiologic FVIII levels (exceeding 15 000 mU/mL), correcting the bleeding diathesis. Injection of only 5 × 107 IU still resulted in therapeutic FVIII levels. In immunocompetent hemophilic FVIII-deficient mice (FVIIIKO), FVIII expression levels peaked at 75 000 mU/mL but declined thereafter because of neutralizing anti-FVIII antibodies and a cellular immune response. Vector administration did not result in thrombocytopenia, anemia, or elevation of the proinflammatory cytokine interleukin-6 (IL-6) and caused no or only transient elevations in serum transaminases. Following transient in vivo depletion of macrophages before gene transfer, significantly higher and stable FVIII expression levels were observed. Injection of only 5 × 106 HC-Ad vectors after macrophage depletion resulted in long-term therapeutic FVIII levels in the FVIIIKO and FVIIIKO-SCID mice. Intravenous injection of an HC-Ad vector into a hemophilia A dog at a dose of 4.3 × 109 IU/kg led to transient therapeutic canine FVIII levels that partially corrected whole-blood clotting time. Inhibitory antibodies to canine FVIII could not be detected, and there were no signs of hepatotoxicity or of hematologic abnormalities. These results contribute to a better understanding of the safety and efficacy of HC-Ad vectors and suggest that the therapeutic window of HC-Ad vectors could be improved by minimizing the interaction between HC-Ad vectors and the innate immune system.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3182-3182
Author(s):  
Yi-Lin Liu ◽  
Hua Zhu ◽  
Alexander Schlachterman ◽  
Heesoon Chang ◽  
Rodney M. Camire ◽  
...  

Abstract Hemophilia A is an inherited X-linked bleeding disorder caused by a deficiency in Factor VIII (FVIII). Clinically significant improvement of hemophilia phenotype can be achieved with low circulating factors, thus makes it a good target disease for gene therapy. Adeno-associated virus (AAV) vectors have proven successful for the delivery of the factor IX gene in humans with hemophilia B. For the treatment of hemophilia A, a problem in the packaging of the rFVIII cDNA or various B-domainless derivatives (i.e. rFVIII-SQ) in AAV vectors is the large size of the insert, which combined with required elements, can exceed the packaging capacity of AAV (~5 kb). This difficulty limits the choice of both promoter and regulatory elements when designing an expression cassette for AAV vectors. Here we developed strategies to overcome these limitations by (1) development of a novel FVIII B-domain deleted molecule (2) construction of a short liver-specific promoter. We further tested these vectors in a series of in vitro and in vivo experiments. Factor VIII-SQ is a well-characterized derivative of FVIII and has been used by several groups in a gene therapy setting; the recombinant protein is used clinically to treat hemophilia A. We have constructed a shorter version of FVIII-SQ, by deleting the entire B-domain. In addition, we have engineered this FVIII to be intracellularly processed using a PACE-furin recognition site such that the protein is secreted from cells as two chains (FVIII-RKR; fully processed heavy and light chains). This FVIII-RKR along with FVIII-SQ was transiently expressed in COS-1 cells and conditioned media was collected at 24, 48 and 72 hrs post transfection. Using a combination of ELISA and functional assays we were able to demonstrate that FVIII-RKR was efficiently secreted from these cells. The data also revealed that FVIII-RKR has a 4–8-fold increase in specific activity compared to FVIII-SQ. We further tested whether FVIII-RKR could function in an in vivo setting. Plasmid DNA (50μg) containing FVIII-RKR or FVIII-SQ with liver-specific mouse transthyretin (mTTR) promoter were introduced into hemophilia A (HA) mice hydrodynamically via tail vein. Two out of four mice in the SQ group and three out of four mice in the RKR group had significant shortening of the clotting time at days 1 and 3 post injection, indicating that this shortened version of FVIII is functional in vivo. To address FVIII long-term expression we synthesized AAV vectors and delivered to immuno-deficient HA mice through hepatic portal vein. AAV vectors containing an expression cassette of mTTR promoter and FVIII-SQ have been administered. Expression of physiological FVIII levels was observed in high dose group (4.0E+12 vector genome per animal, n=4). FVIII activity averages 1.88 U/ml by Coamatic assay or 0.81 U/ml by aPTT assay at 12 weeks post injection. In low dose group (1.0E+12 vector genome per animal, n=5) therapeutic level of FVIII is achieved, 0.59 U/ml by Coamatic assay or 0.23 U/ml by aPTT assay at 12 weeks post injection. Finally, AAV vectors with FVIII-RKR have been produced and shown to have similar packaging efficiency to AAV-FVIII-SQ. Studies are currently underway with AAV-FVIII-RKR to evaluate the ability of this vector to drive long-term expression of functional protein. In summary, we developed a novel FVIII molecule that has high specific activity and is suitable for efficiently packaging in the AAV vectors.


1999 ◽  
Vol 82 (08) ◽  
pp. 555-561 ◽  
Author(s):  
Douglas Jolly ◽  
Judith Greengard

IntroductionHemophilia A results from the plasma deficiency of factor VIII, a gene carried on the X chromosome. Bleeding results from a lack of coagulation factor VIII, a large and complex protein that circulates in complex with its carrier, von Willebrand factor (vWF).1 Severe hemophilia A (<1% of normal circulating levels) is associated with a high degree of mortality, due to spontaneous and trauma-induced, life-threatening and crippling bleeding episodes.2 Current treatment in the United States consists of infusion of plasma-derived or recombinant factor VIII in response to bleeding episodes.3 Such treatment fails to prevent cumulative joint damage, a major cause of hemophilia-associated morbidity.4 Availability of prophylactic treatment, which would reduce the number and severity of bleeding episodes and, consequently, would limit such joint damage, is limited by cost and the problems associated with repeated venous access. Other problems are associated with frequent replacement treatment, including the dangers of transmission of blood-borne infections derived from plasma used as a source of factor VIII or tissue culture or formulation components. These dangers are reduced, but not eliminated, by current manufacturing techniques. Furthermore, approximately 1 in 5 patients with severe hemophilia treated with recombinant or plasma-derived factor VIII develop inhibitory humoral immune responses. In some cases, new inhibitors have developed, apparently in response to unnatural modifications introduced during manufacture or purification.5 Gene therapy could circumvent most of these difficulties. In theory, a single injection of a vector encoding the factor VIII gene could provide constant plasma levels of factor in the long term. However, long-term expression after gene transfer of a systemically expressed protein in higher mammals has seldom been described. In some cases, a vector that appeared promising in a rodent model has not worked well in larger animals, for example, due to a massive immune response not seen in the rodent.6 An excellent review of early efforts at factor VIII gene therapy appeared in an earlier volume of this series.7 A summary of results from various in vivo experiments is shown in Table 1. This chapter will focus on results pertaining to studies using vectors based on murine retroviruses, including our own work.


Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1594-1599 ◽  
Author(s):  
Hengjun Chao ◽  
Lan Mao ◽  
Andrew T. Bruce ◽  
Christopher E. Walsh

Persistent therapeutic levels of human factor VIII (hFVIII) would signify a major advance in the treatment of hemophilia A. Here we report sustained expression of hFVIII in immunocompetent mice using recombinant adeno-associated virus (rAAV) vectors. AAV can stably transduce liver cells, the target tissue for efficient hFVIII production. Because of rAAV packaging constraints, we tested 2 constructs using small regulatory elements designed for liver-specific transgene expression linked to B-domain–deleted hFVIII (BDD-hFVIII) cDNA. More than 1012/mL rAAV/BDD-hFVIII virion particles were generated using a transfection scheme that eliminates adenovirus. Coatest and APTT assays confirmed the production of functional BDD-hFVIII protein after transduction of 293 and HepG2 cells. In vivo experiments were performed in C57BL/6 and NOD/scid mice receiving 1010–11 rAAV/hFVIII particles via portal vein injection. All C57BL/6 mice tested developed anti-hFVIII antibody. In contrast, NOD/scid mice expressed hFVIII reaching 27% of normal human plasma levels. As expected, we could not detect hFVIII antigen from plasma samples isolated from control animals receiving equivalent doses of rAAV expressing enhanced green fluorescent protein (EGFP). Transgene mRNA expression was detected primarily in the liver and histologic analysis of the liver revealed no pathologic abnormalities. These results demonstrate a promising approach for treatment of hemophilia A.


1999 ◽  
Vol 82 (08) ◽  
pp. 562-571 ◽  
Author(s):  
Steven Josephs ◽  
Jiemin Zhou ◽  
Xiangming Fang ◽  
Ramón Alemany ◽  
Cristina Balagué ◽  
...  

IntroductionHemophilia A and B are the most common bleeding disorders caused by deficiencies of clotting factors VIII and IX, respectively, both of which are X-linked with a recessive heredity.1 Replacement of the deficient factors with frequent intravenous injections of plasma concentrates or recombinant proteins is the standard treatment for these diseases.2 Great efforts have been made for nearly a decade toward developing experimental gene therapy for these diseases and aiming at the development of a medical intervention that is more effective and convenient than the currently available replacement therapies.3 Hemophilia is a suitable clinical model for the development of gene therapy products and has a number of advantages: 1) there is a simple and well defined cause-and-effect relationship between the protein deficiencies and bleeding symptoms; 2) tissue-specific expression and precise regulation of the transgenes are not necessary; 3) well characterized animal models are available for preclinical studies; 4) an unequivocal endpoint for product efficacy can be assessed in clinical trials; and 5) even 1% to 5% of the normal physiological levels of the proteins is therapeutic.For gene therapy of hemophilia, the most challenging hurdle, with respect to the long-term expression of the deficient proteins at adequate levels, is the development of a suitable gene delivery system. Technologies have been evolving from ex vivo to in vivo approaches, from initial use of retroviral vector to recent application of adenviral (Ad) or adeno-associated virus (AAV) vector, demonstrating progress from early results of transient low-level expression to more sustained high-level expression.3 For hemophilia A treatment, Ad vectors are particularly useful, since the liver naturally produces factor VIII, and following intravenous (i.v.) injection, Ad vectors concentrate in the liver. This makes the gene transduction efficiency to liver very high. Adenovirus vectors have been developed for gene therapy due to their high titer, broad infectivity, potential for large payload, and in vivo gene delivery capacity.4 Although the immunogenicity and cytotoxicity associated with the early-generation Ad vectors have been a concern with respect to their clinical application, newly developed vectors, in which the viral coding sequences have been deleted, have significantly reduced the side effects associated with the vectors. The “gutless” Ad vector, or so called helper-dependent, large-capacity, or mini- Ad vectors are the representative examples of these new-generation Ad vectors.5-15 The mini-Ad vector system described in this report was developed based on two major research findings. First, an Ad- SV40 hybrid virus discovered during attempts to grow human Ad in non-permissive monkey COS-7 cells.16 The hybrid virus had a genome structure in which only both ends of the Ad sequences were retained and almost all coding sequences of the Ad genome were replaced by symmetric, tandemly repeated SV40 genomes. The hybrid viruses replicated and were packaged in the presence of a wild-type Ad as a helper. This finding implied that total replacement of the Ad genome was possible to form a mini-Ad vector as long as proper helper function and selective pressure was provided. Secondly, it was discovered that Ad packaging can be attenuated by deleting portions of the packaging signal.17 This finding provided a means to put selective pressure on the helper Ad (referred to as ancillary Ad) by specifically limiting its packaging process and allowing a preferential packaging of the mini-Ad. The system, therefore, is designed to have three main components: the mini-Ad vector, the E1-deleted ancillary Ad, and a production cell line that provides AdE1 complementation.Based on the mini-Ad vector system, MiniAdFVIII was developed. The MiniAdFVIII vector carries a 27 kb expression cassette, in which the full-length human factor VIII cDNA is flanked by a human albumin promoter and cognate genomic sequences. Infection of MiniAdFVIII in vitro showed that the vector mediated expression of functional human factor VIII at levels of 100-200 ng/106 cells per 24 hours in HepG2 and 293 cells. With single-dose intravenous injection of 1011 viral particles in hemophilic mice, MiniAdFVIII produced a sustained high-level expression of human factor VIII (at 100-800 ng/ml for up to 369 days) that corrected the factor VIII-deficient phenotype. Safety studies of MiniAdFVIII showed that there were no significant toxicities in mice and dogs after a single intravenous dose of up to 3×1011 and 6×1012 viral particles, respectively. In this report, other studies for developing the MiniAdFVIII vector with a site-specific integration capability and the development of a human factor VIII-tolerized mouse model for preclinical studies of MiniAdFVIII are described.


1993 ◽  
Vol 4 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Rob C. Hoeben ◽  
Frits J. Fallaux ◽  
Nico H. Van Tilburg ◽  
Steve J. Cramer ◽  
Hans Van Ormondt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document