Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells

Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4680-4686 ◽  
Author(s):  
Kent W. Christopherson ◽  
Scott Cooper ◽  
Hal E. Broxmeyer

AbstractCXC ligand 12 (CXCL12; also known as stromal cell–derived factor 1α/SDF-1α) chemoattracts hematopoietic stem and progenitor cells (HSCs/HPCs) and is thought to play a crucial role in the mobilization of HSCs/HPCs from the bone marrow. CD26 (dipeptidylpeptidase IV [DPPIV]) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N-terminus of polypeptide chains. CD26 has the ability to cleave CXCL12 at its position-2 proline. We found by flow cytometry that CD26 is expressed on a subpopulation of normal Sca-1+c-kit+lin— hematopoietic cells isolated from mouse bone marrow, as well as Sca-1+c-kit—lin— cells, and that these cells possess CD26 peptidase activity. To test the functional role of CD26 in CXCL12-mediated normal HSC/HPC migration, chemotaxis assays were performed. The CD26 truncated CXCL12(3-68) showed an inability to induce the migration of sorted Sca-1+c-kit+lin— or Sca-1+c-kit—lin— mouse marrow cells compared with the normal CXCL12. In addition, CXCL12(3-68) acts as an antagonist, resulting in the reduction of migratory response to normal CXCL12. Treatment of Sca-1+c-kit+lin— mouse marrow cells, and myeloid progenitors within this population, or Sca-1+c-kit—lin— cells with a specific CD26 inhibitor, enhanced the migratory response of these cells to CXCL12. Finally, to test for potential in vivo relevance of these in vitro observations, mice were treated with CD26 inhibitors during granulocyte colony-stimulating factor (G-CSF)–induced mobilization. This treatment resulted in a reduction in the number of progenitor cells in the periphery as compared with the G-CSF regimen alone. This suggests that a mechanism of action of G-CSF mobilization involves CD26.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 859-859
Author(s):  
Seiji Fukuda ◽  
Edward M. Conway ◽  
Louis M. Pelus

Abstract The inhibitor of apoptosis protein Survivin is barely detectable in most normal adult tissues but is over-expressed in almost all cancers. Survivin regulates apoptosis, cell division and cell cycle, making anti-Survivin therapy an attractive cancer treatment strategy. We reported that Survivin is expressed and regulated by hematopoietic growth factors in normal human CD34+ cells and that over-expression of wild-type Survivin in bone marrow cells enhances in vitro proliferation and survival of normal hematopoietic progenitor cells, whereas disrupting Survivin reduced their proliferation and survival. These results suggest that Survivin regulates normal hematopoietic progenitor cell function. Although targeted anti-Survivin therapies for cancers demonstrate efficacy without overt toxicity in animal models, the consequences of in vivo Survivin disruption in normal hematopoietic stem and progenitor cells (HSPC) has not been determined. In order to understand the physiological roles of Survivin in normal HSPC function in vivo, we created Cre-ER™/Survivin flox/flox mice, in which the Survivin gene can be excised by Tamoxifen treatment and characterized HSPC growth following Survivin gene deletion. RT-PCR analysis showed that Survivin mRNA is expressed in freshly isolated normal mouse marrow Sca-1+, c-kit+, lin− (SKL) cells and more primitive CD34−SKL cells, which contain long term repopulating hematopoietic stem cells (HSC). Administration of 5mg of Tamoxifen for 6 days (3 days injection, 3 days off, 3 additional days and analyzed 14 days after final injection) in Cre-ER™/Survivin flox/flox mice induced Survivin gene deletion in marrow cells, but had little effect on peripheral blood cell count, marrow cellularity (3.5+/−7.1%, NS) or the proportion or total number of lineage committed cells (Gr-1+, Mac-1+, B220+, CD4+ and/or CD8+) in marrow and in peripheral blood. In contrast, short term Survivin deletion significantly decreased the frequency and the absolute number of undifferentiated linneg cells (37+/−6% reduction), c-kit+, lin− cells (35.2+/−8.4% reduction,), CFU-GM (31+/−9 % reduction), Lin−, IL7Ra−, Sca-1−, c-kit+, CD34+, Fcglow common myeloid progenitor cells (52+/−13% reduction), SKL cells (56.8+/−5.4% reduction) and CD34−SKL cells (60.6+/−5.5% reduction) in bone marrow compared to control mice. The effect of Survivin gene deletion was more dramatic on primitive hematopoietic populations compared to mature cells, which is consistent with down-regulation of Survivin in hematopoietic cells with terminal differentiation. Similarly, treatment of bone marrow cells from Cre-ER™/Survivin flox/flox mice with 1uM of Tamoxifen in vitro significantly reduced the number of CFU-GM, (c-kit+, lin−) KL, SKL and CD34−SKL cells cultured with hematopoietic cytokines and increased apoptosis measured by Annexin-V staining. These results suggest that Survivin is required and regulates normal hematopoietic stem and progenitor function in vivo and that Survivin function may be selectively essential for growth and differentiation of primitive hematopoietic cells. In addition, acute ablation of Survivin may cause adverse toxicity on HSPC that provide long term hematopoiesis in the patients receiving anti-Survivin target therapies.


Blood ◽  
2004 ◽  
Vol 103 (12) ◽  
pp. 4478-4486 ◽  
Author(s):  
Takafumi Kimura ◽  
Andreas M. Boehmler ◽  
Gabriele Seitz ◽  
Selim Kuçi ◽  
Tina Wiesner ◽  
...  

Abstract The novel immunosuppressant FTY720 activates sphingosine 1-phosphate receptors (S1PRs) that affect responsiveness of lymphocytes to chemokines such as stromal cell-derived factor 1 (SDF-1), resulting in increased lymphocyte homing to secondary lymphoid organs. Since SDF-1 and its receptor CXCR4 are also involved in bone marrow (BM) homing of hematopoietic stem and progenitor cells (HPCs), we analyzed expression of S1PRs and the influence of FTY720 on SDF-1/CXCR4-mediated effects in human HPCs. By reverse transcriptase-polymerase chain reaction (RT-PCR), S1PRs were expressed in mobilized CD34+ HPCs, particularly in primitive CD34+/CD38- cells. Incubation of HPCs with FTY720 resulted in prolonged SDF-1-induced calcium mobilization and actin polymerization, and substantially increased SDF-1-dependent in vitro transendothelial migration, without affecting VLA-4, VLA-5, and CXCR4 expression. In nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice, the number of CD34+/CD38- cells that homed to the BM after 18 hours was significantly raised by pretreatment of animals and cells with FTY720, tending to result in improved engraftment. In addition, in vitro growth of HPCs (week-5 cobblestone area-forming cells [CAFCs]) was 2.4-fold increased. We conclude that activation of S1PRs by FTY720 increases CXCR4 function in HPCs both in vitro and in vivo, supporting homing and proliferation of HPCs. In the hematopoietic microenvironment, S1PRs are involved in migration and maintenance of HPCs by modulating the effects of SDF-1. (Blood. 2004;103:4478-4486)


2021 ◽  
Author(s):  
Zixian Liu ◽  
Jinhong Wang ◽  
Miner Xie ◽  
Peng Wu ◽  
Yao Ma ◽  
...  

Hematopoietic stem cells (HSCs) have been considered to progressively lose their self-renewal and differentiation potentials prior to the commitment to each blood lineage. However, recent studies have suggested that megakaryocyte progenitors are generated at the level of HSCs. In this study, we newly identified early megakaryocyte lineage-committed progenitors (MgPs) in CD201-CD48- cells and CD48+ cells separated from the CD150+CD34-Kit+Sca-1+Lin- HSC population of the bone marrow in C57BL/6 mice. Single-cell transplantation and single-cell colony assay showed that MgPs, unlike platelet-biased HSCs, had little repopulating potential in vivo, but formed larger megakaryocyte colonies in vitro (on average eight megakaryocytes per colony) than did previously reported megakaryocyte progenitors (MkPs). Single-cell RNA-sequencing supported that these MgPs lie between HSCs and MkPs along the megakaryocyte differentiation pathway. Single-cell colony assay and single-cell RT-PCR analysis suggested the coexpression of CD41 and Pf4 is associated with megakaryocyte colony-forming activity. Single-cell colony assay of a small number of cells generated from single HSCs in culture suggested that MgPs are not direct progeny of HSCs. In this study, we propose a differentiation model in which HSCs give rise to MkPs through MgPs.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 700-704 ◽  
Author(s):  
Kimberly A. Gush ◽  
Kai-Ling Fu ◽  
Markus Grompe ◽  
Christopher E. Walsh

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital anomalies, and a predisposition to malignancy. FA cells demonstrate hypersensitivity to DNA cross-linking agents, such as mitomycin C (MMC). Mice with a targeted disruption of the FANCC gene (fancc −/− nullizygous mice) exhibit many of the characteristic features of FA and provide a valuable tool for testing novel therapeutic strategies. We have exploited the inherent hypersensitivity offancc −/− hematopoietic cells to assay for phenotypic correction following transfer of the FANCC complementary DNA (cDNA) into bone marrow cells. Murine fancc −/− bone marrow cells were transduced with the use of retrovirus carrying the humanfancc cDNA and injected into lethally irradiated recipients. Mitomycin C (MMC) dosing, known to induce pancytopenia, was used to challenge the transplanted animals. Phenotypic correction was determined by assessment of peripheral blood counts. Mice that received cells transduced with virus carrying the wild-type gene maintained normal blood counts following MMC administration. All nullizygous control animals receiving MMC exhibited pancytopenia shortly before death. Clonogenic assay and polymerase chain reaction analysis confirmed gene transfer of progenitor cells. These results indicate that selective pressure promotes in vivo enrichment offancc-transduced hematopoietic stem/progenitor cells. In addition, MMC resistance coupled with detection of the transgene in secondary recipients suggests transduction and phenotypic correction of long-term repopulating stem cells.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 838-843 ◽  
Author(s):  
HN Steinberg ◽  
PL Page ◽  
SH Robinson

Abstract Two distinct classes of granulocyte progenitor cells present in normal mouse bone marrow are expressed sequentially in the vivo plasma clot diffusion chamber culture system. By several criteria, progenitor cells giving rise to granulocyte colonies on day 4 of culture (CFU-D4) are different from those giving rise to colonies on day 7 (CFU-D7). These differences include: cell cycle activity as measured by in vitro incubation with cytosine arabinoside, residual concentration in the bone marrow after in vivo treatment of donor mice with cytosine arabinoside or methotrexate, resistance to osmotic lysis, size as determined by velocity sedimentation, and the morphology of the granulocyte colonies to which these cells give rise. The CFU-D7 appears to represent an earlier progenitor cell than the CFU-D4 in the differentiation pathway of the granulocyte and is analagous in many respects to the BFU-E in the erythroid pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P<0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 684-684
Author(s):  
David G. Kent ◽  
Brad Dykstra ◽  
Connie J. Eaves

Abstract Hematopoietic stem cells (HSCs) are present in the marrow of adult mice at a frequency of 1/104, as measured by limiting dilution transplantation assays for individual cells that produce lymphoid (B and T) as well as myeloid (GM) cells for at least 4 months in irradiated recipients. HSCs thus defined can be reproducibly isolated in the CD45midlin−Rho−SP fraction of adult mouse bone marrow at a purity of >30%. In mice, mutations in c-kit, the receptor for Steel factor (SF) lead to substantial reductions in the adult HSC population. In vitro, SF has been identified as a potent regulator of HSC self-renewal divisions. High concentrations of SF in combination with IL-11 allow adult HSCs to divide with a net 2–4 fold expansion in HSC numbers after 10 days and low concentrations of SF result in loss of HSC activity. To investigate the cellular mechanisms underlying these different outcomes, we cultured 114 CD45midlin−Rho−SP adult mouse bone marrow cells in single cell cultures containing serum-free medium + 20 ng/ml IL-11 and either 300 or 10 ng/ml of SF. Each culture was then examined every 4–6 hr. The kinetics of division of these cells under both conditions was identical with completion of the 1st division occurring between 22–68 hr. During that time none of the input cells died (<1%). After 10 days of culture, during which time all input cells divided at least 5 times (>50 cells), the HSC content of pooled clones (as measured by in vivo transplantation assays) was found to be >10-fold higher in the clones generated under high vs. low SF conditions (p<0.05). To characterize the types of self-renewal divisions undertaken, 9 doublets generated under the high SF condition were harvested between 4 and 8 hr after they underwent their 1st division and then each of the daughters was injected into a separate irradiated mouse. Analysis of the 18 mice showed that for one of the input cells both daughters were HSCs (evidence of a symmetric self-renewal division) and for 3 more, only one of the 2 daughters was an HSC (evidence of an asymmetric self-renewal division). In contrast no daughter HSCs were identified when 6 doublets produced under the low SF condition were assayed. To determine whether the loss of HSC activity under low SF conditions was a pre- or post-mitotic event, additional in vivo HSC assays were performed on cells harvested from individual wells after 8, 16 and 96 hours of incubation. The results revealed no change in the proportion of wells with either low or high concentrations of SF that contained HSCs after 8 hr of incubation (10/36 positive mice injected with starting single cells and 5/17 (low SF) vs. 6/17 (high SF) positive mice injected with 8-hr single cells, respectively). However, a significant difference (p<0.01) was seen after 96 hr (5/35 vs. 2/43 positive mice, respectively) and, after only 16 hr, before a first mitosis was seen under either condition, a decline in HSCs was apparent under the low SF condition (4/15 vs. 1/15 positive mice injected with cells from the high vs. low SF condition). Together, these studies indicate that HSC exposure to different SF concentrations can rapidly and irreversibly alter the ability of HSCs to execute symmetric as well asymmetric self-renewal divisions in vitro.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1224-1224
Author(s):  
Jerry C. Cheng ◽  
Dejah Judelson ◽  
Kentaro Kinjo ◽  
Jenny Chang ◽  
Elliot Landaw ◽  
...  

Abstract The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, memory, and glucose metabolism. We previously demonstrated that CREB overexpression is associated with an increased risk of relapse in a small cohort of adult acute myeloid leukemia (AML) patients. Transgenic mice that overexpress CREB in myeloid cells develop myeloproliferative/myelodysplastic syndrome after one year. Bone marrow cells from these mice have increased self-renewal and proliferation. To study the expression of CREB in normal hematopoiesis, we performed quantitative real-time PCR in both mouse and human hematopoietic stem cells (HSCs). CREB expression was highest in the lineage negative population and was expressed in mouse HSCs, common myeloid progenitors, granulocyte/monocyte progenitors, megakaryocyte/erythroid progenitors, and in human CD34+38- cells. To understand the requirement of CREB in normal HSCs and myeloid leukemia cells, we inhibited CREB expression using RNA interference in vitro and in vivo. Bone marrow progenitor cells infected with CREB shRNA lentivirus demonstrated a 5-fold decrease in CFU-GM but increased Gr-1/Mac-1+ cells compared to vector control infected cells (p<0.05). There were fewer terminally differentiated Mac-1+ cells in the CREB shRNA transduced cells (30%) compared to vector control (50%), suggesting that CREB is critical for both myeloid cell proliferation and differentiation. CREB downregulation also resulted in increased apoptosis of mouse bone marrow progenitor cells. Given our in vitro results, we transplanted sublethally irradiated mice with mouse bone marrow cells transduced with CREB or scrambled shRNA. At 5 weeks post-transplant, we observed increased Gr-1+/Mac-1+ cells in mice infused with CREB shRNA transduced bone marrow compared to controls. After 12 weeks post-transplant, there was no difference in hematopoietic reconstitution or in the percentage of cells expressing Gr-1+, Mac-1+, Gr-1/Mac-1+, B22-+, CD3+, Ter119+, or HSCs markers, suggesting that CREB is not required for HSC engraftment. To study the effects of CREB knockdown in myeloid leukemia cells, K562 and TF-1 cells were infected with CREB shRNA lentivirus, sorted for GFP expression, and analyzed for CREB expression and proliferation. Within 72 hours, cells transduced with CREB shRNA demonstrated decreased proliferation and survival with increased apoptosis. In cell cycle experiments, we observed increased numbers of cells in G1 and G2/M with CREB downregulation. Expression of cyclins A1 and D, which are known target genes of CREB, was statistically significantly decreased in TF-1 and K562 cells transduced with CREB shRNA lentivirus compared to controls. To study the in vivo effects of CREB knockdown on leukemic progression, we injected SCID mice with Ba/F3 cells expressing bcr-abl or bcr-abl with the T315I mutation and the luciferase reporter gene. Cells were transduced with either CREB or scrambled shRNA. Disease progression was monitored using bioluminescence imaging. The median survival of mice injected with CREB shRNA transduced Ba/F3 bcr-abl or bcr-abl with the T315I mutation was increased with CREB downregulation compared to controls (p<0.05). Our results demonstrate that CREB is a critical regulator of normal and neoplastic hematopoiesis both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document