Involvement of the Integrin Alpha 6 Receptor in the Homing and Engraftment of Hematopoietic Stem and Progenitor Cells to Bone Marrow.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 859-859
Author(s):  
Seiji Fukuda ◽  
Edward M. Conway ◽  
Louis M. Pelus

Abstract The inhibitor of apoptosis protein Survivin is barely detectable in most normal adult tissues but is over-expressed in almost all cancers. Survivin regulates apoptosis, cell division and cell cycle, making anti-Survivin therapy an attractive cancer treatment strategy. We reported that Survivin is expressed and regulated by hematopoietic growth factors in normal human CD34+ cells and that over-expression of wild-type Survivin in bone marrow cells enhances in vitro proliferation and survival of normal hematopoietic progenitor cells, whereas disrupting Survivin reduced their proliferation and survival. These results suggest that Survivin regulates normal hematopoietic progenitor cell function. Although targeted anti-Survivin therapies for cancers demonstrate efficacy without overt toxicity in animal models, the consequences of in vivo Survivin disruption in normal hematopoietic stem and progenitor cells (HSPC) has not been determined. In order to understand the physiological roles of Survivin in normal HSPC function in vivo, we created Cre-ER™/Survivin flox/flox mice, in which the Survivin gene can be excised by Tamoxifen treatment and characterized HSPC growth following Survivin gene deletion. RT-PCR analysis showed that Survivin mRNA is expressed in freshly isolated normal mouse marrow Sca-1+, c-kit+, lin− (SKL) cells and more primitive CD34−SKL cells, which contain long term repopulating hematopoietic stem cells (HSC). Administration of 5mg of Tamoxifen for 6 days (3 days injection, 3 days off, 3 additional days and analyzed 14 days after final injection) in Cre-ER™/Survivin flox/flox mice induced Survivin gene deletion in marrow cells, but had little effect on peripheral blood cell count, marrow cellularity (3.5+/−7.1%, NS) or the proportion or total number of lineage committed cells (Gr-1+, Mac-1+, B220+, CD4+ and/or CD8+) in marrow and in peripheral blood. In contrast, short term Survivin deletion significantly decreased the frequency and the absolute number of undifferentiated linneg cells (37+/−6% reduction), c-kit+, lin− cells (35.2+/−8.4% reduction,), CFU-GM (31+/−9 % reduction), Lin−, IL7Ra−, Sca-1−, c-kit+, CD34+, Fcglow common myeloid progenitor cells (52+/−13% reduction), SKL cells (56.8+/−5.4% reduction) and CD34−SKL cells (60.6+/−5.5% reduction) in bone marrow compared to control mice. The effect of Survivin gene deletion was more dramatic on primitive hematopoietic populations compared to mature cells, which is consistent with down-regulation of Survivin in hematopoietic cells with terminal differentiation. Similarly, treatment of bone marrow cells from Cre-ER™/Survivin flox/flox mice with 1uM of Tamoxifen in vitro significantly reduced the number of CFU-GM, (c-kit+, lin−) KL, SKL and CD34−SKL cells cultured with hematopoietic cytokines and increased apoptosis measured by Annexin-V staining. These results suggest that Survivin is required and regulates normal hematopoietic stem and progenitor function in vivo and that Survivin function may be selectively essential for growth and differentiation of primitive hematopoietic cells. In addition, acute ablation of Survivin may cause adverse toxicity on HSPC that provide long term hematopoiesis in the patients receiving anti-Survivin target therapies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4100-4100
Author(s):  
Darja Karpova ◽  
Katrin Dauber ◽  
Gabriele Spohn ◽  
Doreen Chudziak ◽  
Eliza Wiercinska ◽  
...  

Abstract Abstract 4100 INTRODUCTION: Mobilized hematopoietic stem/progenitor cells (HSPC) have become the favored cell source for stem cell transplantation. The current gold standard mobilizing agent is G-CSF, where a 5-day mobilization regimen precedes stem cell harvest. More fast-acting and potent mobilizing agents would be desirable in the interest of donor and recipient safety and convenience. AMD3100, a currently available fast-acting mobilizing agent has proven weak for clinical mobilization as a single agent, with an efficiency of less than 1/5th of G-CSF in humans. METHODS: Binding properties (position, selectivity, affinity) of the novel PEM CXCR4 antagonist POL5551 to its target receptor were analyzed. In vivo mobilization efficiency was studied after injection into C57Bl/6 or DBA/2 mice. Different administration modes (Bolus vs. continous infusion) were tested as well as a combination with a standard regimen (9×100 μg/kg q12h) of G-CSF or Cyclophosphamide. Progenitor cell mobilization was monitored using clonogenic in vitro assays. Properties of mobilized cells were tested by flow cytometry, in vitro transwell migration assays and in vivo (homing, engraftment kinetics, stem cell contents, secondary engraftment) in lethally irradiated CD45.1 or CD45.1/2 recipient mice, alone or with CD45.1 competitor bone marrow cells. RESULTS: POL5551 showed selective binding to CXCR4 with an affinity exceeding that of its natural ligand SDF1, albeit occupying the extracellular receptor domains only (Fig.1). Mobilization peaked 4 hours after i.p. injection and a positive but non-linear dose-response relationship was documented for doses between 0.5 and 100 mg/kg (6000 CFU-C/ml, Fig. 2). A dose of 15 mg/kg mobilized more than twice the number of CFU-C as an equimolar dose of AMD3100, and a single dose of POL5551 at 30 mg/kg mobilized as strongly as a standard 5-day course of G-CSF treatment. POL5551 synergized with G-CSF in that injection of 5 mg/kg POL5551 after G-CSF treatment increased mobilization by 10-fold (3,000 to approx. 30,000 CFU-C/mL); this represents a 2.5 fold increase compared to a similar treatment regimen with AMD3100. Similarly, synergism with Cyclophosphamide was observed (9,900 to 50,000 CFU-C/mL). Given as continous infusion, 5 mg/kg/day of POL5551 mobilized up to 8,000 CFU-C/ml, whereas at 30 mg/kg/day up to 40,000 CFU-C/ml were measured in circulation on day 3. Mobilized cells migrated efficiently in in vitro transwell assays and homed efficiently to the bone marrow of lethally irradiated recipients. Moreover POL5551 mobilized cells provided timely early engraftment and contained long-term engrafting stem cells with self-renewal capacity, including in serial transplantation. The immunophenotype of immature cells mobilized with POL5551 was characterized by low expression of several adhesion molecules. CONCLUSIONS: POL5551 mobilizes murine stem and progenitor cells with rapid kinetics and unprecedented efficiency, markedly exceeding that of G-CSF and AMD3100. The combination of POL5551 with G-CSF mobilized more strongly than G-CSF with other CXCR4 antagonists. Similar to what we previously described for other mobilized stem cell specimen, POL5551-mobilized cells homed to marrow and engrafted efficiently. Immunophenotype was similar to that of AMD3100 mobilized cells. If the data can be corroborated in humans, POL5551 has the potential to substitute for G-CSF as a mobilizing agent. Disclosures: Romagnoli: Polyphor Ltd.: Employment. Chevalier:Polyphor Ltd: Employment. Patel:Polyphor Ltd.: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3401-3401
Author(s):  
Rebecca L Porter ◽  
Mary A Georger ◽  
Laura M Calvi

Abstract Abstract 3401 Hematopoietic stem and progenitor cells (HSPCs) are responsible for the continual production of all mature blood cells during homeostasis and times of stress. These cells are known to be regulated in part by the bone marrow microenvironment in which they reside. We have previously reported that the microenvironmentally-produced factor Prostaglandin E2 (PGE2) expands HSPCs when administered systemically in naïve mice (Porter, Frisch et. al., Blood, 2009). However, the mechanism mediating this expansion remains unclear. Here, we demonstrate that in vivo PGE2 treatment inhibits apoptosis of HSPCs in naïve mice, as measured by Annexin V staining (p=0.0083, n=6–7 mice/group) and detection of active-Caspase 3 (p=0.01, n=6–7 mice/group). These data suggest that inhibition of apoptosis is at least one mechanism by which PGE2 expands HSPCs. Since PGE2 is a local mediator of injury and is known to play a protective role in other cell types, we hypothesized that it could be an important microenvironmental regulator of HSPCs during times of injury. Thus, these studies explored the role of PGE2 signaling in the bone marrow following myelosuppressive injury using a radiation injury model. Endogenous PGE2 levels in the bone marrow increased 2.9-fold in response to a sub-lethal dose of 6.5 Gy total body irradiation (TBI)(p=0.0004, n=3–11 mice/group). This increase in PGE2 correlated with up-regulation of microenvironmental Cyclooxygenase-2 (Cox-2) mRNA (p=0.0048) and protein levels at 24 and 72 hr post-TBI, respectively. Further augmentation of prostaglandin signaling following 6.5 Gy TBI by administration of exogenous 16,16-dimethyl-PGE2 (dmPGE2) enhanced the survival of functional HSPCs acutely after injury. At 24 hr post-TBI, the bone marrow of dmPGE2-treated animals contained significantly more LSK cells (p=0.0037, n=13 mice/group) and colony forming unit-spleen cells (p=0.037, n=5 mice/group). Competitive transplantation assays at 72 hr post-TBI demonstrated that bone marrow cells from irradiated dmPGE2-treated mice exhibited increased repopulating activity compared with cells from vehicle-treated mice. Taken together, these results indicate that dmPGE2 treatment post-TBI increases survival of functional HSPCs. Since PGE2 can inhibit apoptosis of HSPCs in naïve mice, the effect of dmPGE2 post-TBI on apoptosis was also investigated. HSPCs isolated from mice 24 hr post-TBI demonstrated statistically significant down-regulation of several pro-apoptotic genes and up-regulation of anti-apoptotic genes in dmPGE2-treated animals (3 separate experiments with n=4–8 mice/group in each), suggesting that dmPGE2 initiates an anti-apoptotic program in HSPCs following injury. Notably, there was no significant change in expression of the anti-apoptotic gene Survivin, which has previously been reported to increase in response to ex vivo dmPGE2 treatment of bone marrow cells (Hoggatt et. al., Blood, 2009), suggesting differential effects of dmPGE2 in vivo and/or in an injury setting. Additionally, to ensure that this inhibition of apoptosis was not merely increasing survival of damaged and non-functional HSPCs, the effect of early treatment with dmPGE2 post-TBI on hematopoietic recovery was assayed by monitoring peripheral blood counts. Interestingly, dmPGE2 treatment in the first 72 hr post-TBI significantly accelerated recovery of platelet levels and hematocrit compared with injured vehicle-treated mice (n=12 mice/group). Immunohistochemical analysis of the bone marrow of dmPGE2-treated mice also exhibited a dramatic activation of Cox-2 in the bone marrow microenvironment. This suggests that the beneficial effect of dmPGE2 treatment following injury may occur, both through direct stimulation of hematopoietic cells and also via activation of the HSC niche. In summary, these data indicate that PGE2 is a critical microenvironmental regulator of hematopoietic cells in response to injury. Exploitation of the dmPGE2-induced initiation of an anti-apoptotic program in HSPCs may represent a useful method to increase survival of these cells after sub-lethal radiation injury. Further, amplification of prostaglandin signaling by treatment with PGE2 agonists may also represent a novel approach to meaningfully accelerate recovery of peripheral blood counts in patients with hematopoietic system injury during a vulnerable time when few therapeutic options are currently available. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 513-513
Author(s):  
Pekka Jaako ◽  
Shubhranshu Debnath ◽  
Karin Olsson ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract Abstract 513 Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia associated with physical abnormalities and predisposition to cancer. Mutations in genes that encode ribosomal proteins have been identified in approximately 60–70 % of the patients. Among these genes, ribosomal protein S19 (RPS19) is the most common DBA gene (25 % of the cases). Current DBA therapies involve risks for serious side effects and a high proportion of deaths are treatment-related underscoring the need for novel therapies. We have previously demonstrated that enforced expression of RPS19 improves the proliferation, erythroid colony-forming potential and differentiation of patient derived RPS19-deficient hematopoietic progenitor cells in vitro (Hamaguchi, Blood 2002; Hamaguchi, Mol Ther 2003). Furthermore, RPS19 overexpression enhances the engraftment and erythroid differentiation of patient-derived hematopoietic stem and progenitor cells when transplanted into immunocompromised mice (Flygare, Exp Hematol 2008). Collectively these studies suggest the feasibility of gene therapy in the treatment of RPS19-deficient DBA. In the current project we have assessed the therapeutic efficacy of gene therapy using a mouse model for RPS19-deficient DBA (Jaako, Blood 2011; Jaako, Blood 2012). This model contains an Rps19-targeting shRNA (shRNA-D) that is expressed by a doxycycline-responsive promoter located downstream of Collagen A1 gene. Transgenic animals were bred either heterozygous or homozygous for the shRNA-D in order to generate two models with intermediate or severe Rps19 deficiency, respectively. Indeed, following transplantation, the administration of doxycycline to the recipients with homozygous shRNA-D bone marrow results in an acute and lethal bone marrow failure, while the heterozygous shRNA-D recipients develop a mild and chronic phenotype. We employed lentiviral vectors harboring a codon-optimized human RPS19 cDNA driven by the SFFV promoter, followed by IRES and GFP (SFFV-RPS19). A similar vector without the RPS19 cDNA was used as a control (SFFV-GFP). To assess the therapeutic potential of the SFFV-RPS19 vector in vivo, transduced c-Kit enriched bone marrow cells from control and homozygous shRNA-D mice were injected into lethally irradiated wild-type mice. Based on the percentage of GFP-positive cells, transduction efficiencies varied between 40 % and 60 %. Three months after transplantation, recipient mice were administered doxycycline in order to induce Rps19 deficiency. After two weeks of doxycycline administration, the recipients transplanted with SFFV-RPS19 or SFFV-GFP control cells showed no differences in blood cellularity. Remarkably, at the same time-point the recipients with SFFV-GFP homozygous shRNA-D bone marrow showed a dramatic decrease in blood cellularity that led to death, while the recipients with SFFV-RPS19 shRNA-D bone marrow showed nearly normal blood cellularity. These results demonstrate the potential of enforced expression of RPS19 to reverse the severe anemia and bone marrow failure in DBA. To assess the reconstitution advantage of transduced hematopoietic stem and progenitor cells with time, we performed similar experiments with heterozygous shRNA-D bone marrow cells. We monitored the percentage of GFP-positive myeloid cells in the peripheral blood, which provides a dynamic read-out for bone marrow activity. After four months of doxycycline administration, the mean percentage of GFP-positive cells in the recipients with SFFV-RPS19 heterozygous shRNA-D bone marrow increased to 97 %, while no similar advantage was observed in the recipients with SFFV-RPS19 or SFFV-GFP control bone marrow, or SFFV-GFP heterozygous shRNA-D bone marrow. Consistently, SFFV-RPS19 conferred a reconstitution advantage over the non-transduced cells in the bone marrow. Furthermore, SFFV-RPS19 reversed the hypocellular bone marrow observed in the SFFV-GFP heterozygous shRNA-D recipients. Taken together, using mouse models for RPS19-deficient DBA, we demonstrate that the enforced expression of RPS19 rescues the lethal bone marrow failure and confers a strong reconstitution advantage in vivo. These results provide a proof-of-principle for gene therapy in the treatment of RPS19-deficient DBA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2476-2476
Author(s):  
Kasia Mierzejewska ◽  
Ewa Suszynska ◽  
Sylwia Borkowska ◽  
Malwina Suszynska ◽  
Maja Maj ◽  
...  

Abstract Background Hematopoietic stem/progenitor cells (HSPCs) are exposed in vivo to several growth factors, cytokines, chemokines, and bioactive lipids in bone marrow (BM) in addition to various sex hormones circulating in peripheral blood (PB). It is known that androgen hormones (e.g., danazol) is employed in the clinic to treat aplastic anemia patients. However, the exact mechanism of action of sex hormones secreted by the pituitary gland or gonads is not well understood. Therefore, we performed a complex series of experiments to address the influence of pregnant mare serum gonadotropin (PMSG), luteinizing hormone (LH), follicle-stimulating hormone (FSH), androgen (danazol) and prolactin (PRL) on murine hematopoiesis. In particular, from a mechanistic view we were interested in whether this effect depends on stimulation of BM-residing stem cells or is mediated through the BM microenvironment. Materials and Methods To address this issue, normal 2-month-old C57Bl6 mice were exposed or not to daily injections of PMSG (10 IU/mice/10 days), LH (5 IU/mice/10 days), FSH (5 IU/mice/10 days), danazol (4 mg/kg/10 days) and PRL (1 mg/day/5days). Subsequently, we evaluated changes in the BM number of Sca-1+Lin–CD45– that are precursors of long term repopulating hematopoietic stem cells (LT-HSCs) (Leukemia 2011;25:1278–1285) and bone forming mesenchymal stem cells (Stem Cell & Dev. 2013;22:622-30) and Sca-1+Lin–CD45+ hematopoietic stem/progenitor cells (HSPC) cells by FACS, the number of clonogenic progenitors from all hematopoietic lineages, and changes in peripheral blood (PB) counts. In some of the experiments, mice were exposed to bromodeoxyuridine (BrdU) to evaluate whether sex hormones affect stem cell cycling. By employing RT-PCR, we also evaluated the expression of cell-surface and intracellular receptors for hormones in purified populations of murine BM stem cells. In parallel, we studied whether stimulation by sex hormones activates major signaling pathways (MAPKp42/44 and AKT) in HSPCs and evaluated the effect of sex hormones on the clonogenic potential of murine CFU-Mix, BFU-E, CFU-GM, and CFU-Meg in vitro. We also sublethally irradiated mice and studied whether administration of sex hormones accelerates recovery of peripheral blood parameters. Finally, we determined the influence of sex hormones on the motility of stem cells in direct chemotaxis assays as well as in direct in vivo stem cell mobilization studies. Results We found that 10-day administration of each of the sex hormones evaluated in this study directly stimulated expansion of HSPCs in BM, as measured by an increase in the number of these cells in BM (∼2–3x), and enhanced BrdU incorporation (the percentage of quiescent BrdU+Sca-1+Lin–CD45– cells increased from ∼2% to ∼15–35% and the percentage of BrdU+Sca-1+Lin–CD45+ cells increased from 24% to 43–58%, Figure 1). These increases paralleled an increase in the number of clonogenic progenitors in BM (∼2–3x). We also observed that murine Sca-1+Lin–CD45– and Sca-1+Lin–CD45+ cells express sex hormone receptors and respond by phosphorylation of MAPKp42/44 and AKT in response to exposure to PSMG, LH, FSH, danazol and PRL. We also observed that administration of sex hormones accelerated the recovery of PB cell counts in sublethally irradiated mice and slightly mobilized HSPCs into PB. Finally, in direct in vitro clonogenic experiments on purified murine SKL cells, we observed a stimulatory effect of sex hormones on clonogenic potential in the order: CFU-Mix > BFU-E > CFU-Meg > CFU-GM. Conclusions Our data indicate for the first time that not only danazol but also several pituitary-secreted sex hormones directly stimulate the expansion of stem cells in BM. This effect seems to be direct, as precursors of LT-HSCs and HSPCs express all the receptors for these hormones and respond to stimulation by phosphorylation of intracellular pathways involved in cell proliferation. These hormones also directly stimulated in vitro proliferation of purified HSPCs. In conclusion, our studies support the possibility that not only danazol but also several other upstream pituitary sex hormones could be employed to treat aplastic disorders and irradiation syndromes. Further dose- and time-optimizing mouse studies and studies with human cells are in progress in our laboratories. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 421-432 ◽  
Author(s):  
D DiGiusto ◽  
S Chen ◽  
J Combs ◽  
S Webb ◽  
R Namikawa ◽  
...  

Experimentation on human stem cells is hampered by the relative paucity of this population and by the lack of assays identifying multilineage differentiation, particularly along the lymphoid lineages. In our current study, phenotypic analysis of low-density fetal bone marrow cells showed two distinct populations of CD34+ cells: those expressing a high density of CD34 antigen on their surface (CD34hi) and those expressing an intermediate level of CD34 antigen (CD34lo). Multiple tissues were used to characterize the in vitro and in vivo potential of these subsets and showed that only CD34hi cells support long-term B lymphopoiesis and myelopoiesis in vitro and mediate T, B, and myeloid repopulation of human tissues implanted into SCID mice. CD34lo cells repeatedly failed to provide long-term hematopoietic activity in vivo or in vitro. These results indicate that a simple fractionation based on well-defined CD34 antigen levels can be used to reproducibly isolate cells highly enriched for in vivo long-term repopulating activity and for multipotent progenitors, including T- and B-cell precursors. Additionally, given the limited variability in the results and the high correlation between in vitro and in vivo hematopoietic potential, we propose that the CD34hi population contains virtually all of the stem cell activity in fetal bone marrow and therefore is the population of choice for future studies in hematopoietic stem cell development and gene therapy.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
James W. Swann ◽  
Lada A. Koneva ◽  
Daniel Regan-Komito ◽  
Stephen N. Sansom ◽  
Fiona Powrie ◽  
...  

An important comorbidity of chronic inflammation is anemia, which may be related to dysregulated activity of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Among HSPCs, we found that the receptor for IL-33, ST2, is expressed preferentially and highly on erythroid progenitors. Induction of inflammatory spondyloarthritis in mice increased IL-33 in BM plasma, and IL-33 was required for inflammation-dependent suppression of erythropoiesis in BM. Conversely, administration of IL-33 in healthy mice suppressed erythropoiesis, decreased hemoglobin expression, and caused anemia. Using purified erythroid progenitors in vitro, we show that IL-33 directly inhibited terminal maturation. This effect was dependent on NF-κB activation and associated with altered signaling events downstream of the erythropoietin receptor. Accordingly, IL-33 also suppressed erythropoietin-accelerated erythropoiesis in vivo. These results reveal a role for IL-33 in pathogenesis of anemia during inflammatory disease and define a new target for its treatment.


Blood ◽  
1999 ◽  
Vol 93 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Shai Erlich ◽  
Silvia R.P. Miranda ◽  
Jan W.M. Visser ◽  
Arie Dagan ◽  
Shimon Gatt ◽  
...  

Abstract The general utility of a novel, fluorescence-based procedure for assessing gene transfer and expression has been demonstrated using hematopoietic stem and progenitor cells. Lineage-depleted hematopoietic cells were isolated from the bone marrow or fetal livers of acid sphingomyelinase–deficient mice, and retrovirally transduced with amphotropic or ecotropic vectors encoding a normal acid sphingomyelinase (ASM) cDNA. Anti–c-Kit antibodies were then used to label stem- and progenitor-enriched cell populations, and the Bodipy fluorescence was analyzed in each group after incubation with a Bodipy-conjugated sphingomyelin. Only cells expressing the functional ASM (ie, transduced) could degrade the sphingomyelin, thereby reducing their Bodipy fluorescence as compared with nontransduced cells. The usefulness of this procedure for the in vitro assessment of gene transfer into hematopoietic stem cells was evaluated, as well as its ability to provide an enrichment of transduced stem cells in vivo. To show the value of this method for in vitro analysis, the effects of retroviral transduction using ecotropic versus amphotropic vectors, various growth factor combinations, and adult bone marrow versus fetal liver stem cells were assessed. The results of these studies confirmed the fact that ecotropic vectors were much more efficient at transducing murine stem cells than amphotropic vectors, and that among the three most commonly used growth factors (stem cell factor [SCF] and interleukins 3 and 6 [IL-3 and IL-6]), SCF had the most significant effect on the transduction of stem cells, whereas IL-6 had the most significant effect on progenitor cells. In addition, it was determined that fetal liver stem cells were only approximately twofold more “transducible” than stem cells from adult bone marrow. Transplantation of Bodipy-selected bone marrow cells into lethally irradiated mice showed that the number of spleen colony-forming units that were positive for the retroviral vector (as determined by polymerase chain reaction) was 76%, as compared with 32% in animals that were transplanted with cells that were nonselected. The methods described within this manuscript are particularly useful for evaluating hematopoietic stem cell gene transfer in vivo because the marker gene used in the procedure (ASM) encodes a naturally occurring mammalian enzyme that has no known adverse effects, and the fluorescent compound used for selection (Bodipy sphingomyelin) is removed from the cells before transplantation.


Sign in / Sign up

Export Citation Format

Share Document