diffusion chamber
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 41)

H-INDEX

39
(FIVE YEARS 3)

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1360
Author(s):  
Riley L. Howard ◽  
Francesca Bernardi ◽  
Matthew Leff ◽  
Emma Abele ◽  
Nancy L. Allbritton ◽  
...  

Liquid lithography represents a robust technique for fabricating three-dimensional (3D) microstructures on a two-dimensional template. Silanization of a surface is often a key step in the liquid lithography process and is used to alter the surface energy of the substrate and, consequently, the shape of the 3D microfeatures produced. In this work, we present a passive technique that allows for the generation of silane gradients along the length of a substrate. The technique relies on a secondary diffusion chamber with a single opening, leading to a directional introduction of silane to the substrate via passive diffusion. The secondary chamber geometry influences the deposited gradient, which is shown to be well captured by Monte Carlo simulations that incorporate the passive diffusion and grafting processes. The technique ultimately allows the user to generate a range of substrate wettabilities on a single chip, enhancing throughput for organ-on-a-chip applications by mimicking the spatial variability of tissue topographies present in vivo.


Author(s):  
V.M. Markovic ◽  
J.M. Stajic ◽  
B. Milenkovic ◽  
N. Stevanovic

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4942
Author(s):  
Florian Wesenauer ◽  
Christian Jordan ◽  
Mudassar Azam ◽  
Michael Harasek ◽  
Franz Winter

A series of porous clay samples prepared at different pretreatment temperatures have been tested in a diffusion chamber. Diffusivity and permeability were examined in a temperature range from ambient to 900 °C. Gaseous mixtures of O2, CO2, and N2 have been applied, as these species are the relevant gases in the context of clay brick firing and similar thermochemical processes. Diffusive transport characteristics have been determined by means of the mean transport-pore model, and permeability has been evaluated by Darcy’s law. CO2 diffusivity increased strongly with temperature, whereas O2 diffusion was limited to a certain level. It is proposed that one should consider CO2 surface diffusion in order to explain this phenomenon. The diffusion model was expanded and surface diffusion was included in the model equation. The results of the model fit reflected the important role of incorporated carbonates of the clay foundation in gas-phase (molecular or Knudsen) diffusivity. CO2 surface diffusion was observed to exhibit similar coefficients for two different investigated clays, and is therefore indicated as a property of natural clays. Permeability showed a progressive rise with temperature, in line with related literature.


2021 ◽  
Vol 7 (2) ◽  
pp. 76-80
Author(s):  
L. N. Mishra ◽  
Å. Fredriksen

This article deals about the experimental measurement of plasma potential, ion saturation current and Mach number obtained with the variation of power, operating gas pressure and radial position using retarding field energy analyzer. We employed a retarding field energy analyzer by rotating with different angles such as 0° (facing toward source), 90° (facing side walls) and 180° (facing opposite the source). The coil current is varied from 0 to 15 A to produce the magnetic field which is used to confine the plasma. The flow of plasma has been characterized which was found to be subsonic. The low-temperature plasma is produced by means of a 13.56 MHz helicon plasma source at 300-1000 kW radio frequency power. The plasma is expanding from 13.8 cm diameter source into a 150 cm long diffusion chamber of 60 cm diameter.


2021 ◽  
Vol 21 (15) ◽  
pp. 11613-11636
Author(s):  
Markus Hartmann ◽  
Xianda Gong ◽  
Simonas Kecorius ◽  
Manuela van Pinxteren ◽  
Teresa Vogl ◽  
...  

Abstract. Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. −38 ∘C and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above −10 ∘C and below −32 ∘C, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes. By heating of the filter samples to 95 ∘C for 1 h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2 µm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2 µm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with −3.47 ∘C, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above −10 ∘C. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source.


Author(s):  
Naim M. Bautista ◽  
Hans Malte ◽  
Chandrasekhar Natarajan ◽  
Tobias Wang ◽  
Jay F. Storz ◽  
...  

Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in the red blood cell upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease Hb-O2 saturation. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of the Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas-diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator, and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians.Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 910
Author(s):  
Júlia Tárnoki-Zách ◽  
Elod Mehes ◽  
Zsófia Varga-Medveczky ◽  
Dona Greta Isai ◽  
Nandor Barany ◽  
...  

There is an increasing demand for transdermal transport measurements to optimize topical drug formulations and to achieve proper penetration profile of cosmetic ingredients. Reflecting ethical concerns the use of both human and animal tissues is becoming more restricted. Therefore, the focus of dermal research is shifting towards in vitro assays. In the current proof-of-concept study a three-layer skin equivalent using human HaCaT keratinocytes, an electrospun polycaprolactone mesh and a collagen-I gel was compared to human excised skin samples. We measured the permeability of the samples for 2% caffeine cream using a miniaturized dynamic diffusion cell (“skin-on-a-chip” microfluidic device). Caffeine delivery exhibits similar transport kinetics through the artificial skin and the human tissue: after a rapid rise, a long-lasting high concentration steady state develops. This is markedly distinct from the kinetics measured when using cell-free constructs, where a shorter release was observable. These results imply that both the established skin equivalent and the microfluidic diffusion chamber can serve as a suitable base for further development of more complex tissue substitutes.


2021 ◽  
pp. 68-71
Author(s):  
S.N. Afanasiev

The reaction 16O(γ, p)3H3 induced by bremsstrahlung photons of endpoint energy Emaxγ = 150 MeV has been studied by the method of a diffusion chamber in a magnetic field. The energy dependence of the total cross section has been measured in the energy range from the threshold and has been founded a broad resonance centered at 55 MeV. The rate of decrease in the cross section undergoes a change in the region around 55 MeV. A comparison was made with the cross section for reactions 4He(γ, p)3H and 12С(γ, р)3H2. The agreement between the shapes of distributions for the (γ, p)3H reactions is evident and was concluded that the mechanism of interaction of the γ-quantum with the nucleus is similar. The dependence of average kinetic energy of particles on the total kinetic energy was determined. In the whole energy interval, the distribution for a proton is more than the statistical distribution. Distribution of relative energy of the proton and 3H nucleus in their c.m.s. does not agree with the predictions of the mechanism of photon absorption by an α-particle cluster, but at energies above the maximum, it agrees with calculations within the framework of the quasi-deuteron model of photoabsorption.


Sign in / Sign up

Export Citation Format

Share Document