Adhesion to E-selectin promotes growth inhibition and apoptosis of human and murine hematopoietic progenitor cells independent of PSGL-1

Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1685-1692 ◽  
Author(s):  
Ingrid G. Winkler ◽  
Karen R. Snapp ◽  
Paul J. Simmons ◽  
Jean-Pierre Lévesque

AbstractAlthough both P- and E-selectin are constitutively expressed on bone marrow endothelial cells, their role in the regulation of hematopoiesis has only recently been investigated. We have previously shown that P-selectin glycoprotein ligand-l (PSGL-1/CD162) is expressed by primitive human bone marrow CD34+ cells, mediates their adhesion to P-selectin, and, more importantly, inhibits their proliferation. We now demonstrate that adhesion to E-selectin inhibits the proliferation of human CD34+ cells isolated either from human umbilical cord blood, adult mobilized blood, or steady-state bone marrow. Furthermore, a subpopulation, which does not contain the most primitive hematopoietic progenitor cells, undergoes apoptosis following E-selectin–mediated adhesion. The same phenomenon was observed in cells isolated from mouse bone marrow. Using lineage-negative Sca-1+ c-KIT+ bone marrow cells from PSGL-1–/– and wild-type mice, we establish that PSGL-1 is not the ligand involved in E-selectin–mediated growth inhibition and apoptosis. Moreover, stable transfection of the human myeloid cell line K562 (which does not express PSGL-1) with α(1,3) fucosyltransferase VII alone was sufficient to recapitulate the E-selectin–mediated growth inhibition and apoptosis observed in hematopoietic progenitor cells. These data demonstrate that an E-selectin ligand(s) other than PSGL-1 transduces growth inhibitory and proapoptotic signals and requires posttranslational fucosylation to be functional.

1988 ◽  
Vol 168 (6) ◽  
pp. 2337-2347 ◽  
Author(s):  
P J Voogt ◽  
E Goulmy ◽  
W F Veenhof ◽  
M Hamilton ◽  
W E Fibbe ◽  
...  

Previously, five CTL lines directed against minor histocompatibility (mH) antigens designated HA-1-5 have been established from peripheral blood of patients after allogeneic bone marrow transplantation (BMT), and have been characterized using population and family studies. All cell lines showed specific HLA class I-restricted lysis of PHA-stimulated peripheral blood target cells from donors positive for the particular mH antigens. After 4 h of incubation of the mH antigen HA-3-specific CTL line with bone marrow cells from HA-3+ donors, complete class I-restricted inhibition of colony growth of the hematopoietic progenitor cells was observed even at low E/T ratios, indicating that the HA-3 antigen is strongly expressed on hematopoietic stem cells. Therefore, this antigen may be a target structure in the immune-mediated rejection of the hematopoietic graft in case of incompatibility for this determinant between donor and recipient in allogeneic BMT. In contrast, incubation of bone marrow cells with the antigen-specific anti-HA-1, -2, -4, and -5 CTL lines did not result in growth inhibition of the hematopoietic progenitor cells tested. After a prolonged incubation time and using a very high E/T ratio, progenitor cells from HA-2+ or HA-5+ donors were killed to some extent by the anti-mH-specific CTL lines, although the growth inhibition observed was minor and variable. Our results show that mH antigens are differentially expressed on human hematopoietic progenitor cells. Therefore, only some of these antigens may be targets in immune-mediated rejection of the bone marrow graft.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1473-1481 ◽  
Author(s):  
LS Rusten ◽  
SE Jacobsen ◽  
O Kaalhus ◽  
OP Veiby ◽  
S Funderud ◽  
...  

Abstract Several studies have previously demonstrated enrichment in primitive progenitor cells in subfractions of CD34+ bone marrow (BM) cells not expressing CD38 or HLA-DR (DR) antigens. However, no studies have directly compared these two cell populations with regard to their content of primitive and more committed progenitor cells. Flow cytometric analysis of immunomagnetic isolated CD34+ cells demonstrated little overlap between CD34+CD38- and CD34+DR- progenitor subpopulations in that only 12% to 14% of total CD34+DR- and CD34+CD38- cells were double negative (CD34+CD38-DR-). Although the number of committed myeloid progenitor cells (colony-forming units granulocyte- macrophage) was reduced in both subpopulations, only CD34+CD38- cells were significantly depleted in committed erythroid progenitor cells (burst-forming units-erythroid). In single-cell assay, CD34+CD38- cells showed consistently poorer response to single as opposed to multiple hematopoietic growth factors as compared with unfractionated CD34+ cells, indicating that the CD34+CD38- subset is relatively enriched in primitive hematopoietic progenitor cells. Furthermore, CD34+CD38- and CD34+DR- cells, respectively, formed 3.2-fold and 1.6-fold more high proliferative potential colony-forming cell (HPP-CFC) colonies than did unfractionated CD34+ cells. Finally, CD34+CD38-DR- cells were depleted in HPP-CFCs as compared with CD34+CD38+DR+ cells. The results of the present study suggest that both the CD38- and DR- subfractions of CD34+ bone marrow cells are enriched in primitive hematopoietic progenitor cells, with the CD34+CD38- subpopulation being more highly enriched than CD34+DR- cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 526-526
Author(s):  
Tuoen Liu ◽  
Kilannin Krysiak ◽  
Cara Lunn Shirai ◽  
Matthew Ndonwi ◽  
Matthew J. Walter

Abstract HSPA9, a gene located on chromosome 5q31.2, is commonly deleted in patients with myelodysplastic syndromes (MDS). MDS patients with a deletion of the long arm of chromosome 5 [del(5q)] typically present with cytopenias, including anemia, and have increased levels of apoptosis in their bone marrow contributing to ineffective hematopoiesis. Recent evidence suggests that upregulation of TP53 in MDS bone marrow cells may contribute to the cytopenias and accererated apoptosis observed in patients. While the mechanisms of TP53 activation in MDS are likely to be multifactorial, gene haploinsufficiency has been shown to contribute. Previous reports have shown that knockdown of RPS14, a chromosome 5q33.1 gene, in human CD34+ cells (or heterozygous knockout in mouse bone marrow cells) results in upregulation of TP53 and an increase in apoptosis. It is not known whether additional del(5q) candidate genes contribute to TP53 activation in del(5q)-associated MDS. In order to determine whether HSPA9 gene deletion also results in TP53 activation, we used lentiviral shRNA vectors to knockdown the expression of HSPA9 in primary human CD34+ hematopoietic progenitor cells. The HSPA9 protein level was reduced to ~20% (sh960) and ~50% (sh433) compared to the control lentiviral shRNA (shGFP). Knockdown of HSPA9 significantly inhibited the growth (fold change sh960 compared to shGFP = 0.16, p<0.01; sh433 compared to shGFP = 0.39, p=0.06, N=3) and erythroid differentiation (CD71+ expression fold change sh960 compared to shGFP =0.26, p<0.001; sh433 compared to shGFP = 0.52, p<0.01, N=3) of human CD34+ cells grown in media promoting erythroid differentiation after 7 days in culture. In addition, knockdown of HSPA9 by sh960 significantly increased apoptosis (AnnexinV+ cells) in CD34+ cells compared to shGFP (fold change = 2, p<0.01, N=3). The increased apoptosis observed following HSPA9 knockdown was associated with increased TP53 expression (fold change sh960 compared to shGFP = 2 by intracellular flow cytometry, p<0.05, N=3), TP53 activity (sh960 compared to shGFP, p<0.05; sh433 compared to shGFP, p=0.06 by TP53 luciferase reporter assay), and increased mRNA expression of the pro-apoptotic TP53 target gene BAX (fold change sh960 compared to shGFP = 1.8 by Q-RT-PCR, p<0.05). Gene expression profiling of CD34+ cells transduced with sh433 vs. control knockdown revealed that 26 well-annotated TP53-induced genes are also expressed higher in HSPA9 knockdown cells compared to controls by gene set enrichment (FWER p=0.01), further implicating TP53 activation in HSPA9 knockdown cells. We show that treatment of primary human CD34+ cells with MKT-077, a rhodacyanine dye with inhibitory effects on HSPA9 protein by binding to its nucleotide binding domain, also results in dose-dependent growth inhibition, enhanced apoptosis, and reduced erythroid differentiation, similar to that observed following HSPA9 knockdown. HSPA9 has been shown to physically interact with TP53 in the cytoplasm, and knockdown of HSPA9 changes localization of TP53 from the cytoplasm to the nucleus in non-hematopoietic cells. The loss of cytoplasmic sequestration of TP53 by HSPA9 following HSPA9 knockdown is thought to contribute to many of the cellular phenotypes induced by HSPA9 knockdown. We show by immunoprecipitation that HSPA9 also interacts with TP53 in primary human CD34+ cells, providing a possible mechanism for regulation of TP53 by HSPA9 in hematopoietic cells. These findings indicate that HSPA9 knockdown may contribute to TP53 activation and increased apoptosis observed in del(5q)-associated MDS. The data also suggest that genetic (i.e., mutation or deletion) or functional inactivation of TP53 may be necessary for disease progression to occur in MDS patients with del(5q). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1473-1481 ◽  
Author(s):  
LS Rusten ◽  
SE Jacobsen ◽  
O Kaalhus ◽  
OP Veiby ◽  
S Funderud ◽  
...  

Several studies have previously demonstrated enrichment in primitive progenitor cells in subfractions of CD34+ bone marrow (BM) cells not expressing CD38 or HLA-DR (DR) antigens. However, no studies have directly compared these two cell populations with regard to their content of primitive and more committed progenitor cells. Flow cytometric analysis of immunomagnetic isolated CD34+ cells demonstrated little overlap between CD34+CD38- and CD34+DR- progenitor subpopulations in that only 12% to 14% of total CD34+DR- and CD34+CD38- cells were double negative (CD34+CD38-DR-). Although the number of committed myeloid progenitor cells (colony-forming units granulocyte- macrophage) was reduced in both subpopulations, only CD34+CD38- cells were significantly depleted in committed erythroid progenitor cells (burst-forming units-erythroid). In single-cell assay, CD34+CD38- cells showed consistently poorer response to single as opposed to multiple hematopoietic growth factors as compared with unfractionated CD34+ cells, indicating that the CD34+CD38- subset is relatively enriched in primitive hematopoietic progenitor cells. Furthermore, CD34+CD38- and CD34+DR- cells, respectively, formed 3.2-fold and 1.6-fold more high proliferative potential colony-forming cell (HPP-CFC) colonies than did unfractionated CD34+ cells. Finally, CD34+CD38-DR- cells were depleted in HPP-CFCs as compared with CD34+CD38+DR+ cells. The results of the present study suggest that both the CD38- and DR- subfractions of CD34+ bone marrow cells are enriched in primitive hematopoietic progenitor cells, with the CD34+CD38- subpopulation being more highly enriched than CD34+DR- cells.


1993 ◽  
Vol 2 (2) ◽  
pp. 243-245 ◽  
Author(s):  
ARNON NAGLER ◽  
MARGO PEACOCK ◽  
MARISA TANTOCO ◽  
DONALD LAMONS ◽  
THOMAS B. OKARMA ◽  
...  

Author(s):  
A. M. Goltsev ◽  
T. G. Dubrava ◽  
Yu. O. Gaevska ◽  
N. M. Babenko ◽  
M. O. Bondarovych ◽  
...  

Background. Previously, the antitumor activity of nanocomplexes (NCs) containing nanoparticles of rare earth metal orthovanadates GdYEuVO4 and cholesterol has been approved when applied in 9:1 ratio (the cells-to-NCs), which can be considered as a conditionally therapeutic dose. Therefore, studying the potential risks of NCs exposure in terms of functional activity of hematopoietic progenitor cells is relevant. Рurpose – determining a toxic effect of NCs on functional activity of hematopoietic cells of bone marrow (BM). Materials and Methods. The study was performed in BM cells of CBA/H mice. Nanocomplexes were synthesized at Institute for Scintillation Materials of the National Academy of Sciences of Ukraine. BM cells with NCs were incubated in the ratios as follows: 9BM:1NCs; 1BM:1NCs; 1BM:9NCs, followed by assessing the number of apoptotic/necrotic cells in BM using FITC Annexin V Apoptosis Detection Kit I (BD, USA) by means of “FACS Calibur” flow cytometer (“BD”, USA). Hematopoietic progenitor cells of BM were functionally evaluated in vivo by determining the content of colony-forming units of the spleen (CFUs) and the number of myelokaryocytes in lethally irradiated recipients on day 8 after administering BM cells, pre-incubated with NCs. Survival of irradiated recipient mice after BM administration was recorded 12 days long. Results and discussion. The dose-dependent effect of functional potential in- hibition for BM hematopoietic progenitor cells under NCs influence has been established. Although, in vitro processing the BM cells with a conditionally therapeutic dose of NCs (9BM:1NCs) before administration to irradiated animal caused remodeling of cell membranes and contributed to apoptotic manifes- tations, but it did not lead to strong changes in their colony-forming potential and did not reduce the number of BM cells in animals if compared with the introduced BM cells without NCs treatment. Increasing the NCs concentration five- and tenfold significantly reduced the colony-forming potential of BM cells, caused BM hypoplasia and a crucial reduction in the survival of recipient animals, indicating possible toxic effects of this compound when administered at high concentrations. Conclusions. The toxic effect of NCs is detected only when certain concen- trations, significantly exceeding the conditionally therapeutic dose previously determined when treating the experimental oncology diseases, are used.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 717-722 ◽  
Author(s):  
MA Eglitis ◽  
PW Kantoff ◽  
JD Jolly ◽  
JB Jones ◽  
WF Anderson ◽  
...  

Abstract The Moloney murine leukemia retrovirus-derived vector N2 was used to transfer the bacterial NeoR gene (conferring resistance to the neomycin analogue G418) into hematopoietic progenitor cells. Approximately 5% of day seven CFU-GM were resistant to 2,000 micrograms/ml G418, using a supernatant infection protocol in the absence of vector-producing cells. A greater proportion of CFU-GM colonies were recovered relative to uninfected controls as the stringency of selection was diminished. Enzyme activity was detected in drug-resistant colonies, confirming that the resistant colonies obtained after infection with N2 represented cells producing neomycin phosphotransferase. Activity in the CFU-GM colonies approached 50% of that of drug-resistant vector- producing cells on a per cell basis. To test the hypothesis that more rapidly cycling bone marrow cells would be more susceptible to vector infection, we treated progenitor cells obtained from cyclic hematopoietic (CH) dogs with the N2 vector. Despite the increased numbers of hematopoietic progenitor cells obtained from CH dogs, the proportion of G418-resistant CFU-GM did not increase over that obtained with N2-infected normal marrow. These results demonstrate that retroviral vectors can be used to transfer and express exogenous genes in canine hematopoietic progenitor cells.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 658-668 ◽  
Author(s):  
Amy C. Ladd ◽  
Robert Pyatt ◽  
Andre Gothot ◽  
Susan Rice ◽  
Jon McMahel ◽  
...  

Abstract Bone marrow (BM) CD34+ cells residing in the G0 phase of cell cycle may be the most suited candidates for the examination of cell cycle activation and proliferation of primitive hematopoietic progenitor cells (HPCs). We designed a double simultaneous labeling technique using both DNA and RNA staining with Hoechst 33342 and Pyronin Y, respectively, to isolate CD34+ cells residing in G0(G0CD34+ ). Using long-term BM cultures and limiting dilution analysis, G0CD34+ cells were found to be enriched for primitive HPCs. In vitro proliferation of G0CD34+ cells in response to sequential cytokine stimulation was examined in a two-step assay. In the first step, cells received a primary stimulation consisting of either stem cell factor (SCF), Flt3-ligand (FL), interleukin-3 (IL-3), or IL-6 for 7 days. In the second step, cells from each group were washed and split into four or more groups, each of which was cultured again for another week with one of the four primary cytokines individually, or in combination. Tracking of progeny cells was accomplished by staining cells with PKH2 on day 0 and with PKH26 on day 7. Overall examination of proliferation patterns over 2 weeks showed that cells could progress into four phases of proliferation. Phase I contained cytokine nonresponsive cells that failed to proliferate. Phase II contained cells dividing up to three times within the first 7 days. Phases III and IV consisted of cells dividing up to five divisions and greater than six divisions, respectively, by the end of the 14-day period. Regardless of the cytokine used for primary stimulation, G0CD34+ cells moved only to phase II by day 7, whereas a substantial percentage of cells incubated with SCF or FL remained in phase I. Cells cultured in SCF or FL for the entire 14-day period did not progress beyond phase III but proliferated into phase IV (with &lt;20% of cells remaining in phases I and II) if IL-3, but not IL-6, was substituted for either cytokine on day 7. G0CD34+ cells incubated with IL-3 for 14 days proliferated the most and progressed into phase IV; however, when SCF was substituted on day 7, cells failed to proliferate into phase IV. Most intriguing was a group of cells, many of which were CD34+, detected in cultures initially stimulated with IL-3, which remained as a distinct population, mostly in G0 /G1 , unable to progress out of phase II regardless of the nature of the second stimulus received on day 7. A small percentage of these cells expressed cyclin E, suggesting that their proliferation arrest may have been mediated by a cyclin-related disruption in cell cycle. These results suggest that a programmed response to sequential cytokine stimulation may be part of a control mechanism required for maintenance of proliferation of primitive HPCs and that unscheduled stimulation of CD34+ cells residing in G0 may result in disruption of cell-cycle regulation.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 661-669 ◽  
Author(s):  
EF Srour ◽  
JE Brandt ◽  
RA Briddell ◽  
S Grigsby ◽  
T Leemhuis ◽  
...  

Abstract Although sustained production of committed human hematopoietic progenitor cells in long-term bone marrow cultures (LTBMC) is well documented, evidence for the generation and expansion of human primitive hematopoietic progenitor cells (PHPC) in such cultures is lacking. For that purpose, we attempted to determine if the human high proliferative potential colony-forming cell (HPP-CFC), a primitive hematopoietic marrow progenitor cell, is capable of generation and expansion in vitro. To that effect, stromal cell-free LTBMC were initiated with CD34+ HLA-DR-CD15- rhodamine 123dull bone marrow cells and were maintained with repeated addition of c-kit ligand and a synthetic interleukin-3/granulocyte-macrophage colony-stimulating factor fusion protein. By day 21 of LTBMC, a greater than twofold increase in the number of assayable HPP-CFC was detected. Furthermore, the production of HPP-CFC in LTBMC continued for up to 4 weeks, resulting in a 5.5-fold increase in HPP-CFC numbers. Weekly phenotypic analyses of cells harvested from LTBMC showed that the number of CD34+ HLA-DR- cells increased from 10(4) on day 0 to 56 CD34+ HLA-DR- cells increased from 10(4) on day 0 to 56 x 10(4) by day 21. To examine further the nature of the in vitro HPP-CFC expansion, individual HPP- CFC colonies were serially cloned. Secondary cloning of individual, day 28 primary HPP-CFC indicated that 46% of these colonies formed an average of nine secondary colony-forming unit--granulocyte-macrophage (CFU-GM)--derived colonies, whereas 43% of primary HPP-CFC gave rise to between one and six secondary HPP-CFC colonies and 6 to 26 CFU-GM. These data show that CD34+ HLA-DR- CD15- rhodamine 123dull cells represent a fraction of human bone marrow highly enriched for HPP-CFC and that based on their regeneration and proliferative capacities, a hierarchy of HPP-CFC exists. Furthermore, these studies indicate that in the presence of appropriate cytokine stimulation, it is possible to expand the number of PHPC in vitro.


Sign in / Sign up

Export Citation Format

Share Document