scholarly journals Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab

Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2736-2744 ◽  
Author(s):  
Rhona Stein ◽  
Zhengxing Qu ◽  
Susan Chen ◽  
David Solis ◽  
Hans J. Hansen ◽  
...  

AbstractHLA-DR is under investigation as a target for monoclonal antibody (mAb) therapy of malignancies. Here we describe a humanized IgG4 form of the anti-HLA-DR mAb L243, hL243γ4P (IMMU-114), generated to provide an agent with selectivity toward neoplastic cells that can kill without complement-dependent cytotoxicity (CDC) or antibody-dependent cellular-cytotoxicity (ADCC), so as to reduce reliance on intact immunologic systems in the patient and effector mechanism-related toxicity. In vitro studies show that replacing the Fc region of hL243γ1, a humanized IgG1 anti-HLA-DR mAb, with the IgG4 isotype abrogates the effector cell functions of the antibody (ADCC and CDC) while retaining its antigen-binding properties, antiproliferative capacity (in vitro and in vivo), and the ability to induce apoptosis concurrent with activation of the AKT survival pathway. Growth inhibition was evaluated compared with and in combination with the anti-CD20 mAb rituximab, with the combination being more effective than rituximab alone in inhibiting proliferation. Thus, hL243γ4P is indistinguishable from hL243γ1 and the parental murine mAb in assays dependent on antigen recognition. The abrogation of ADCC and CDC, which are believed to play a major role in side effects of mAb therapy, may make this antibody an attractive clinical agent. In addition, combination of hL243γ4P with rituximab offers the prospect for improved patient outcome.

2018 ◽  
Vol 18 (12) ◽  
pp. 2895-2904 ◽  
Author(s):  
Jacinda Ristov ◽  
Pascal Espie ◽  
Peter Ulrich ◽  
Denise Sickert ◽  
Thierry Flandre ◽  
...  
Keyword(s):  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1610-1610 ◽  
Author(s):  
Berengere Vire ◽  
Justin SA Perry ◽  
Elinor Lee ◽  
Lawrence S Stennett ◽  
Leigh Samsel ◽  
...  

Abstract Abstract 1610 Poster Board I-636 A major mechanism how the chimeric anti-CD20 monoclonal antibody rituximab (RTX) depletes B-cells is antibody-dependent cellular cytotoxicity (ADCC). ADCC has been modeled in-vitro and in mouse models. However, investigations on ADCC directly in patients treated with RTX are scarce. Recent efforts have focused on improving ADCC through modifications in the Fc binding portion of novel antibodies or through stimulation of effector cell functions with GM-CSF. A more detailed understanding of ADCC as a therapeutic process is needed to optimize such strategies and to identify biomarkers of improved efficacy. Here we report a comprehensive analysis of ADCC in previously untreated CLL patients during the first two RTX infusions (375mg/m2) given in combination with fludarabine every 4 weeks. Following the initial infusion of RTX the absolute lymphocyte count (ALC) decreased by a median of 74% at 2h, followed by a partial recrudescence of cells so that by 24h the median decrease in ALC reached 39% (n=11). ADCC is mediated by effector cells that include NK cells, monocytes/macrophages, and granulocytes. First, we investigated changes in NK cell function: consistent with NK cell activation we found an increase in CD69 at 2, 6 and up to 24h (median 4.2-fold, p=0.005, n=10) after RTX administration and increased expression of the degranulation marker CD107a/b (median 1.9-fold, p<0.001, n=5) and down-regulation of perforin expression (median decrease 63%, p<0.001, n=5) at 4h from treatment start. Activation of NK cells is triggered by the engagement of CD16/FcγRIIIa by RTX coated CLL cells. Interestingly, CD16 expression on NK cells was rapidly lost, already apparent at 2h and maximal at 6h from the start of the RTX infusion (median decrease 82%, p=0.02, n=10) and was not completely recovered by 24h. We also found a significant decrease in expression of CD16 on granulocytes (78%, p<0.001, n=5) but an increase in monocytes (3.9-fold, p<0.001, n=5). In addition to loss of CD16, we found that the cytotoxic capacity of the effector cells was rapidly exhausted: in an oxidative-burst assay, monocytes showed a significant decrease in the production of reactive oxygen species 4h after initiation of RTX infusion (median 60% decrease, p=0.043) and at 6h from the start of the RTX infusion NK cell-mediated killing of K562 target cells was reduced by half (p<0.001, n=3). Interestingly, both the acute reaction to RTX infusions that manifest as a cytokine release syndrome and changes in effector cell function peaked during the first hours of the RTX infusion. We hypothesized that this might be due to the process of CD20 shaving, a rapid and pronounced decrease of CD20 cell surface expression modeled in-vitro and in mice as the result of a mechanism called trogocytosis that relies on the direct and rapid exchange of cell membrane fragments and associated molecules between effectors and target cells (Beum, J Immunol, 2008). First, we used western blot analysis of total CD20 protein in CLL cells and found a rapid loss of CD20 that was apparent already at 2h resulting in virtually complete loss of expression at 24h. Next, we used ImageStream technology to directly visualize ADCC interactions in-vivo. We indeed detected transfer of CD20 from CLL cells to NK cells and monocytes, resulting in complete CD20 loss in circulating CLL cells. While we detected transfer of CD20 into both cell types, monocytes were much more engaged in trogocytosis than NK cells. Consistently, 4h post RTX infusion we found a significant increase in intracellular RTX in granulocytes and monocytes using intracellular staining for human IgG. CD20 shaving appears to be of particular importance given that immunohistochemical analyses revealed that persistent disease in the bone marrow aspirates after 4 cycles of RTX treatment was mostly CD20 negative. Collectively, our results identify loss of CD20 from CLL cells by trogocytosis and exhaustion of immune effector mechanisms as limitations for anti-CD20 immunotherapy. These data identify possible avenues for improving CD20 mediated immunotherapy and characterize endpoints on which different anti-CD20 antibodies can be compared. Given that trogocytosis appears to be a common occurrence our findings likely have general importance to immunotherapy of hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 36 (9) ◽  
pp. 1443-1452 ◽  
Author(s):  
Flavio Forrer ◽  
Jianhua Chen ◽  
Melpomeni Fani ◽  
Pia Powell ◽  
Andreas Lohri ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3245-3245
Author(s):  
Ada H.V. Repetto-Llamazares ◽  
Roy Hartvig Larsen ◽  
Landsverk Kirsti ◽  
Trond Stokke ◽  
Bergthora Eiriksdottir ◽  
...  

Abstract Immunotherapy (IT) with the anti-CD20 monoclonal antibody rituximab in combination with chemotherapy has resulted in significantly improved response rate and survival in patients with various types of CD20 positive B-cell lymphoproliferative disorders. To be effective, rituximab depends on selective expression of a sufficient number of CD20 antigens per cell. Treatment with rituximab alone or in combination with chemotherapy can, however, result in disappearance of the CD20 expression, which may result in reduced clinical effect of subsequent CD20 targeted treatments. We have discovered that treatment of NHL in vitro and in vivo with the anti-CD37 antibody radionuclide conjugate (ARC) 177Lu-DOTA-HH1 (177Lu-HH1 or Betalutin™) results in an upregulation of the CD20 antigen expression, and therefore represents a rationale for a combination treatment with both agents. The in vitro expression of CD20 in Burkitt's Lymphoma, Daudi, cells 1-7 days after treatment with 177Lu-HH1 increased up to 120 % when compared with cells treated with unlabeled mAb, while Ramos (Burkitt's Lymphoma) and Rec-1 (Mantle Cell Lymphoma) cells showed 10 to 30 % increase, indicating a variation of the antigen upregulation in vitro with different cell lines. An upregulation of CD20 at the same order of magnitude was observed when cells where treated with similar absorbed radiation doses of external beam radiation. Treatment of nude mice with Ramos xenografts with 177Lu-HH1 resulted in a 3 times higher uptake of radiolabeled rituximab in tumor xenografts 5 days after start of treatment than in mice treated with unlabeled HH1 (p < 0.05) while uptake in normal organs was similar in both treatment groups (p > 0.05). SCID mice with intravenously injected Rec-1 cells were treated with NaCl, 100 mg rituximab, 40 MBq/kg 177Lu-HH1 or with the combination of 40 MBq/kg 177Lu-HH1 followed with 100 mg rituximab 5 days later. The combination of 177Lu-HH1 and rituximab resulted in significantly improved survival as compared with NaCl or rituximab alone, and a strong therapeutic gain as compared with 177Lu-HH1 alone (Table 1). In conclusion, 177Lu-HH1 treatment seems to improve uptake of rituximab and increase tumor suppression when used prior to anti-CD20 monoclonal antibody targeting in preclinical models. The reason for the upregulation of CD20 is probably related to the oxidative stress induced by the ARC-treatment, which will be evaluated in further studies. If the upregultation of CD20 is confirmed in clinical studies this effect could affect the way ARC and CD20 immunotherapy would be used in the future. Table 1. Therapy experiment groups and result Group Median ± SD Surviving fraction at the end of the study % Increase in symptom free survival compared to control NaCl + NaCl 64 ± 2 0.1 ---- NaCl + Rituximab 75 ± 10 0.3 15.4 177 Lu-HH1 + NaCl 92 ± 14 * 0.3 43.8 177 Lu-HH1 + Rituximab > 132 * 0.7 > 106.3 *Significantly different from NaCl + NaCl group (p < 0.01) Disclosures Repetto-Llamazares: Nordic Nanovector ASA: Employment, Equity Ownership. Larsen:Nordic Nanovector ASA: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Stokke:Nordic nanovector ASA: Equity Ownership. Generalov:Nordic Nanovector ASA: Employment. Dahle:Nordic Nanovector ASA: Employment, Equity Ownership.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2540-2542 ◽  
Author(s):  
Mark S. Cragg ◽  
Mike B. Bayne ◽  
Alison L. Tutt ◽  
Ruth R. French ◽  
Stephen Beers ◽  
...  

Abstract The chimeric anti-CD20 monoclonal antibody (mAb), rituximab, is an established part of the management of many non-Hodgkin lymphomas. The in vivo action of rituximab remains elusive, and this partially reflects a lack of highly specific reagents to detect rituximab binding at the cell surface. Here we report a new high-affinity mAb (MB2A4) with fine specificity for the idiotype of rituximab. It is able to detect rituximab in vitro, in the presence of high levels of human immunoglobulin G (IgG), in the serum of patients receiving rituximab therapy, and, surprisingly, when rituximab is bound to CD20 on the cell surface. We propose that the anti–idiotype (Id) binds to rituximab molecules bound univalently at the cell surface, facilitated by the relatively high off-rate of rituximab. This reagent provides new insights into the binding of rituximab at the cell surface and demonstrates a mode of binding that could be exploited for the surface detection of other mAbs with clinical and biologic applications.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4370-4372 ◽  
Author(s):  
Ezogelin Oflazoglu ◽  
Ivan J. Stone ◽  
Kristine A. Gordon ◽  
Iqbal S. Grewal ◽  
Nico van Rooijen ◽  
...  

Increased expression of CD30 is associated with a variety of hematologic malignancies, including Hodgkin disease (HD) and anaplastic large cell lymphoma (ALCL). The anti-CD30 monoclonal antibody SGN-30 induces direct antitumor activity by promoting growth arrest and DNA fragmentation of CD30+ tumor cells. In this study, we investigated the contributions of Fc-mediated effector cell functions to SGN-30 activity. We determined that antibody-dependent cellular phagocytosis, mediated by macrophages, to contribute significantly to antitumor activity in vitro. To delineate the identity of the host effector cells involved in mediating antitumor activity in vivo, we studied the effects of effector cell ablation in a disseminated model of HD (L540cy). Depletion of macrophages markedly reduced efficacy of SGN-30, demonstrating that macrophages contribute significantly to SGN-30 efficacy in this model. These findings may have implications for patient stratification or combination treatment strategies in clinical trials conducted with SGN-30 in HD and ALCL.


2006 ◽  
Vol 66 (19) ◽  
pp. 9673-9681 ◽  
Author(s):  
Weibo Cai ◽  
Yun Wu ◽  
Kai Chen ◽  
Qizhen Cao ◽  
David A. Tice ◽  
...  

1989 ◽  
Vol 94 (4) ◽  
pp. 725-731
Author(s):  
M.E. Bramwell ◽  
S.M. Humm

Using immunoblotting techniques, the antigen that binds the monoclonal antibody M27 has been clearly defined in terms of apparent molecular mass and distribution. In reducing conditions it has an apparent mass of 178K (K = 10(3) Mr) and is present in the cytoplasm and membranes of all mammalian tissue culture cells so far examined. It is absent from lines derived from avian, piscine and amphibian sources. It is also absent from foetal liver of both rat and mouse, but subsequently appears after cultivation in vitro. Similarly, it can be detected on rat lymphocytes only after mitogenic stimulation. However, it is found on both hepatoma and lymphoma cells in vitro, and on in vivo tumours from murine sources. It thus appears to be associated with cell proliferation.


Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1062-1070 ◽  
Author(s):  
David M. Goldenberg ◽  
Edmund A. Rossi ◽  
Rhona Stein ◽  
Thomas M. Cardillo ◽  
Myron S. Czuczman ◽  
...  

Abstract Veltuzumab is a humanized anti-CD20 monoclonal antibody with complementarity-determining regions (CDRs) identical to rituximab, except for one residue at the 101st position (Kabat numbering) in CDR3 of the variable heavy chain (VH), having aspartic acid (Asp) instead of asparagine (Asn), with framework regions of epratuzumab, a humanized anti-CD22 antibody. When compared with rituximab, veltuzumab has significantly reduced off-rates in 3 human lymphoma cell lines tested, aswell as increased complement-dependent cytotoxicity in 1 of 3 cell lines, but no other in vitro differences. Mutation studies confirmed that the differentiation of the off-rate between veltuzumab and rituximab is related to the single amino acid change in CDR3-VH. Studies of intraperitoneal and subcutaneous doses in mouse models of human lymphoma and in normal cynomolgus monkeys disclosed that low doses of veltuzumab control tumor growth or deplete circulating or sessile B cells. Low- and high-dose veltuzumab were significantly more effective in vivo than rituximab in 3 lymphoma models. These findings are consistent with activity in patients with non-Hodgkin lymphoma given low intravenous or subcutaneous doses of veltuzumab. Thus, changing Asn101 to Asp101 in CDR3-VH of rituximab is responsible for veltuzumab's lower off-rate and apparent improved potency in preclinical models that could translate into advantages in patients.


Sign in / Sign up

Export Citation Format

Share Document