Receptor-type protein tyrosine phosphatase gamma (PTPγ), a new identifier for myeloid dendritic cells and specialized macrophages

Blood ◽  
2006 ◽  
Vol 108 (13) ◽  
pp. 4223-4231 ◽  
Author(s):  
Daniele Lissandrini ◽  
William Vermi ◽  
Marzia Vezzalini ◽  
Silvano Sozzani ◽  
Fabio Facchetti ◽  
...  

AbstractProtein tyrosine phosphatase (PTPγ) is a receptor-like molecule with a known role in murine hematopoiesis. We analyzed the regulation of PTPγ expression in the human hematopoietic system, where it was detected in human peripheral blood monocytes and dendritic cells (DCs) of myeloid and plasmacytoid phenotypes. Its expression was maintained during in vitro monocyte differentiation to dendritic cells (moDC) and was further increased after maturation with bacterial lipopolysaccharide (LPS), CD40L, and TNFα. But PTPγ was absent when monocytes from the same donor were induced to differentiate in macrophages. B and T lymphocytes did not express PTPγ. Rather, PTPγ mRNA was expressed in primary and secondary lymphoid tissues, and the highest expression was in the spleen. PTPγ was detected by immunohistochemistry in subsets of myeloid-derived DCs and specialized macrophages (tingible bodies, sinus and alveolar macrophages). Classic macrophages in infective or reactive granulomatous reactions did not express PTPγ. Increased PTPγ expression was associated with a decreased ability to induce proliferation and interferon-γ secretion in T cells by moDCs from patients with advanced pancreatic cancer. Taken together, these results indicate that PTPγ is a finely regulated protein in DC and macrophage subsets in vitro and in vivo.

2007 ◽  
Vol 2 ◽  
pp. 117727190700200 ◽  
Author(s):  
Andrea Mafficini ◽  
Marzia Vezzalini ◽  
Loris Zamai ◽  
Laura Galeotti ◽  
Gabriella Bergamini ◽  
...  

Protein Tyrosine Phosphatase gamma (PTPγ) is a receptor-like transmembrane protein belonging to the family of classical protein tyrosine phosphatases. PTPγ is known to regulate haematopoietic differentiation in a murine embryonic stem cells model. We have recently demonstrated that PTPγ mRNA is expressed in monocytes, tissue-localized myeloid dendritic cells and in both myeloid and plasmacytoid dendritic cells in peripheral blood. We now developed a PTPγ specific antibody that recognizes the protein by flow cytometry. PTPγ expression was detected in monocytes and both myeloid and plasmacytoid dendritic cells, while PMN showed a low but consistent staining in contrast with previous mRNA data. B cells were found to express the phosphatase while T cells were negative. In keeping with RNA data, PTPγ was detected in monocyte-derived dendritic cells and its expression rose upon LPS stimulation. Finally, we discovered that CD34+ haematopoietic precursors express high PTPγ level that drops during in vitro expansion induced by IL-3 and SCF growth factors. We therefore propose PTPγ as a new functionally regulated leukocyte marker whose role in normal and pathological context deserve further investigation.


2013 ◽  
Vol 34 (5) ◽  
pp. 888-899 ◽  
Author(s):  
Inmoo Rhee ◽  
Ming-Chao Zhong ◽  
Boris Reizis ◽  
Cheolho Cheong ◽  
André Veillette

Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responsesin vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2.


2020 ◽  
Vol 11 ◽  
Author(s):  
Larissa Hering ◽  
Egle Katkeviciute ◽  
Marlene Schwarzfischer ◽  
Philipp Busenhart ◽  
Claudia Gottier ◽  
...  

2001 ◽  
Vol 173 (1-2) ◽  
pp. 109-120 ◽  
Author(s):  
Xin-Yuan Wang ◽  
Katrin Bergdahl ◽  
Anna Heijbel ◽  
Charlotta Liljebris ◽  
John E. Bleasdale

1994 ◽  
Vol 14 (8) ◽  
pp. 5523-5532
Author(s):  
D R Stover ◽  
K A Walsh

We describe a potential regulatory mechanism for the transmembrane protein-tyrosine phosphatase CD45. Phosphorylation on both tyrosine and serine residues in vitro results in an activation of CD45 specifically toward one artificial substrate but not another. The activation of these kinases appears to be order dependent, as it is enhanced when phosphorylation of tyrosine precedes that of serine but phosphorylation in the reverse order yields no activation. Any of four protein-tyrosine kinases tested, in combination with the protein-serine/threonine kinase, casein kinase II, was capable of mediating this activation in vitro. The time course of phosphorylation of CD45 in response to T-cell activation is consistent with the possibility that this regulatory mechanism is utilized in vivo.


Author(s):  
Chang-An Geng ◽  
Zhen-Tao Deng ◽  
Qian Huang ◽  
Chun-Lei Xiang ◽  
Ji-Jun Chen

AbstractTen 3,5-dimethylcoumarins (1–6 and 8‒11) involving six new ones (1–6), together with a known 3-methylcoumarin (7), were isolated from the aerial parts of three Chelonopsis plants, C. praecox, C. odontochila, and C. pseudobracteata. The structures of the new compounds were determined by extensive HRESIMS, 1D and 2D NMR spectroscopic analyses. According to the substitution at C-5, these coumarins were classified into 5-methyl, 5-hydroxymethyl, 5-formyl, and 5-nor types. All the isolates were assayed for their inhibition on α-glucosidase, protein tyrosine phosphatase 1B, and T-cell protein tyrosine phosphatase in vitro. Graphic Abstract


Author(s):  
Nursamsiar Nursamsiar ◽  
Akbar Awaluddin ◽  
Megawati Megawati ◽  
Yulita M. Soko ◽  
Muhammad Aswad

Senyawa aglikon kurkuligosida A memiliki struktur yang mirip dengan senyawa licoagrochalcone yang terbukti memiliki aktivitas penghambatan yang kuat secara in vitro pada Protein Tyrosine Phosphatase 1B (PTP1B), yang dianggap sebagai target terapeutik untuk pengobatan diabetes melitus tipe 2. Penelitian ini bertujuan untuk mengetahui interaksi antara senyawa aglikon kurkuligosida A dan turunannya dengan PTP1B menggunakan metode simulasi docking. Simulasi docking dilakukan dengan menggunakan perangkat lunak AutoDock 4.2. Hasil docking menunjukan semua senyawa yang diuji dapat berinteraksi dengan sisi aktif PTP1B. Interaksi terbaik ditunjukkan oleh senyawa 31 (3,5-dihidroksibensil-3,5-dinitrobenzoate), senyawa 39 (3,5-dihidroksibensil-4-nitrobenzoate) dan senyawa 52 (4-hidroksibensil-4-nitro bensoat) dengan nilai energi bebas ikatan berturut-turut –9,40 kkal/mol ; –9,19 kkal/mol dan –9,03 kkal/mol. Ketiga senyawa tersebut memiliki interaksi dengan sisi aktif PTP1B dengan residu asam amino Ser216 dan Arg221. Semua senyawa turunan aglikon kurkuligosida A yang diuji juga memiliki pola pengikatan yang sama dengan ligan alami pada PTP1B.


Author(s):  
Thomas Lubben ◽  
Jill Clampit ◽  
Michael Stashko ◽  
James Trevillyan ◽  
Michael R. Jirousek

Sign in / Sign up

Export Citation Format

Share Document