Factor XI Contributes to Thrombin Generation in the Absence of Factor XIIa

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3082-3082 ◽  
Author(s):  
Anton Matafonov ◽  
Dmitri Kravtsov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
John P. Sheehan ◽  
...  

Abstract Factor XI (fXI) is the zymogen of a plasma protease (fXIa) that contributes to coagulation by activating factor IX. The mechanism by which fXI is converted to fXIa in plasma has been a topic of recent debate. When plasma is exposed to a charged surface, factor XII (fXII) is converted to fXIIa, which then activates fXI. The importance of this reaction to hemostasis in vivo is questionable, as fXII deficiency does not cause abnormal bleeding. This suggests that fXI can be activated by other proteases, with α-thrombin receiving considerable attention in this regard. Results from several laboratories support a model in which α-thrombin activates fXI to propagate coagulation. This notion has been challenged by a recent study that found no direct evidence of fXI activation by α-thrombin in plasma and that fXI activation during plasma preparation can give the false impression that fXI is activated independent of fXIIa. We developed two plasma systems to examine thrombin generation (measured by calibrated automated thrombography) in the absence of fXII, with due consideration to the possibility that traces of fXIa can affect results. In the first system, fXI deficient plasma is initially treated with corn trypsin inhibitor to neutralize fXIIa, and then supplemented with fXI treated previously with DFP to neutralize contaminating fXIa. The second system uses fXII deficient plasma, and endogenous fXI is neutralized with an antibody if a fXI deficient state is required. Coagulation is initiated in both systems by addition of Ca2+ with or without tissue factor (TF - <10 pM), α-thrombin (5 nM), or factor Xa (6 pM). In both systems, significant thrombin generation was detected only in the presence of fXI, and required TF, α-thrombin, or factor Xa. Ca2+ alone did not stimulate thrombin generation. Thrombin generation was detected in fXI deficient plasma stimulated with as little as 3.0 pM fXIa. However, only 0.3 pM fXIa was required to induce thrombin generation if fXI was present, indicating additional fXIa is generated after addition of the fXIa trigger. The fXI deficient plasma system was not reconstituted by fXI variants defective in factor IX activation, nor by a fXI variant that is activated poorly by α-thrombin but normally by fXIIa. The results support a model in which fXI is activated in plasma by thrombin, with fXIa subsequently contributing to additional thrombin generation through factor IX activation. α-thrombin generated early in these reactions could promote subsequent thrombin generation through activation of factors V and VIII, as well as conversion of fibrinogen to fibrin. These reactions involve interactions with anion binding exosite I (ABE-I) on α-thrombin. When thrombin with a dysfunctional ABE-I (β-thrombin or α-thrombin with ABE-I mutations) were tested in the plasma systems, fXI-dependent thrombin generation was actually greater, and occurred earlier, than in the same system stimulated with α-thrombin. Studies with purified proteins and SDS-PAGE showed that β-thrombin and the ABE-I mutants convert fXI to fXIa similarly to α-thrombin. α-thrombin was also able to activate fXI in the presence of the ABE-I blocking peptide hirugen. β-thrombin and the exosite I mutants may promote fXI-dependent thrombin generation in plasma better than α-thrombin because there is no competition from fibrinogen. The different behavior of α-thrombin compared to β-thrombin and the ABE-I mutants supports the broader concept that thrombin activates fXI in plasma, and indicates that fXI activation by thrombin does not require ABE-I. Natural products of prothrombin activation lacking ABE-I, such as β-thrombin, therefore, may contribute to factor XI activation in plasma.

Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2127-2127
Author(s):  
Henri M. H. Spronk ◽  
Sabine Wilhelm ◽  
Rene Van Oerle ◽  
Menno L. Knetsch ◽  
David Gailani ◽  
...  

Abstract Abstract 2127 Poster Board II-102 Background: The revised model of coagulation proposes that factor XI (FXI) can be activated by thrombin, which is generated upon activation of the tissue factor (TF) pathway. This concept, however, has not been tested in vivo. A recent study questioned the existence of this feedback loop and suggested that factor XII (FXII) is the sole activator of FXI. Here, we analyze the feedback activation of FXI in plasma and in genetically altered mice. Methods and results: Fluorescence-based assays indicated that particle-bound thrombin caused thrombin generation in plasma both in the absence of TF and in the presence of active site inhibited factor VIIa. Thrombin failed to activate FXII and thrombin generation was almost completely abolished by an anti-FXIa antibody and in FXI-deficient plasma. Surface bound thrombin induced complex formation of FXI, with its major inhibitor C1 inhibitor, even in FXII-deficient plasma in a time and dose dependent manner. To determine if thrombin-driven FXI activation is important for hemostasis in vivo we used TF deficient mice (low TF), which have severely reduced thrombin formation. Low TF mice were crossed with mice deficient in one of the intrinsic pathway proteases FXII, FXI, or FIX. Double deficiency in TF and either FIX or FXI resulted in the intrauterine death of embryos due to hemorrhage. In contrast low TF/FXII-null mice were viable and the bleeding phenotype was unchanged from low TF animals. Conclusions: Surface-bound thrombin, a model for fibrin clot-protected thrombin, generates thrombin in a FXI dependent manner, independently from FXII. In addition to corroborating an amplifying role of FXI in thrombin generation, we provide the first evidence that at low TF levels FXI is essential in generating a sufficient ambient level of thrombin to permit embryonic development. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Abstract Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.


1998 ◽  
Vol 80 (08) ◽  
pp. 233-238 ◽  
Author(s):  
K. A. Mitropoulos ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. C. Martin ◽  
M. P. Esnouf ◽  
...  

SummaryAbetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyce-ride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 μmol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients’ mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaolei Wang ◽  
Guihua Yang ◽  
Shanshuang Li ◽  
Meifeng Gao ◽  
Pangfeng Zhao ◽  
...  

Thymosinβ4 (Tβ4) is one of the most promising thymosins for future clinical applications, and it is anticipated that commercial demand for Tβ4 will increase. In order to develop a new approach to produce recombinant Tβ4, a 168 bp DNA (termedTβ4) was designed based on the Tβ4 protein sequence and used to express a 4 ×Tβ4 concatemer (four tandem copies of Tβ4, termed 4 ×Tβ4) together with a histidine tag (6 × His) inE. coli(strain BL21). SDS-PAGE and western blot analysis were used to confirm that a recombinant 4 × Tβ4 protein of the expected size (30.87 kDa) was produced following the induction of the bacterial cultures with isopropylβ-D-thiogalactoside (IPTG). TheE. coli-derived 4 ×Tβ4 was purified by Ni-NTA resin, and its activities were examined with regard to both stimulating proliferation of the mice spleen cellsin vitroandin vivowound healing. The results demonstrate that these activities of theE. coli-derived recombinant 4 × Tβ4 were similar or even better than existing commercially obtained Tβ4. This production strategy therefore represents a potentially valuable approach for future commercial production of recombinant Tβ4.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1751-1751
Author(s):  
Samit Ghosh ◽  
Mirella Ezban ◽  
Egon Persson ◽  
Ulla Hedner ◽  
Usha Pendurthi ◽  
...  

Abstract High doses of recombinant factor VIIa (FVIIa) have been found to bypass factor IX or factor VIII deficiency and ameliorate the bleeding problems associated with hemophilia patients with inhibitors. Recent studies show that FVIIa also acts as an effective hemostatic agent in other categories of patients, and thus has become a promising candidate for prevention and treatment of excessive bleeding associated with many other diseases/injuries. Although recombinant FVIIa has proven to be a very effective and safe drug in the treatment of bleeding episodes in hemophilia patients with inhibitors and other indications, a small fraction of patients may be refractory to FVIIa treatment. The reason for this is unclear at present, but it is possible that administration of very high pharmacological doses of FVIIa or use of genetically modified FVIIa molecules with increased potencies may circumvent the problem. The most dramatic effect on the activity (a 40-fold increase in proteolytic activity) of FVIIa was obtained by occupying the corresponding positions in thrombin/factor IXa for those positions 158, 296 and 298 of FVIIa (FVIIaDVQ). A FVIIa mutant in which the hydrophobic residue Met 298 was replaced with Gln (FVIIaQ) has 7-fold higher proteolytic activity. In the present study, we investigated the interactions of FVIIaQ and FVIIaDVQ with plasma inhibitors, tissue factor pathway inhibitor (TFPI) and antithrombin (AT) in solution and at the vascular endothelium. Both TFPI and AT/heparin inhibited the FVIIa variants more rapidly than the wild-type FVIIa in the absence of TF. In the presence of TF, TFPI, TFPI-Xa and AT/heparin inhibited FVIIa and FVIIa variants at similar rates. Although the wild-type FVIIa failed to generate significant amounts of factor Xa on unperturbed endothelial cells, FVIIa variants, particularly FVIIaDVQ, generated a substantial amount of factor Xa on unperturbed endothelium (1 nM of factor VIIa generated 0.3 ± 0.15 nM factor Xa/h whereas FVIIaQ and FVIIaDVQ generated 1.26 ± 0.1 nM/h and 9.48 ± 1.32 nM/h, respectively). Annexin V fully attenuated the FVIIa-mediated activation of factor X on unperturbed endothelial cells whereas anti-TF IgG had no effect. On stimulated HUVEC, FVIIa and FVIIa variants activated factor X at similar rates (30–40 nM/h). AT/heparin and TFPI-Xa inhibited the activity of FVIIa and FVIIa variants bound to endothelial cell TF in a similar fashion. AT inhibition of FVIIa bound to stimulated endothelial cells requires exogenous heparin. Interestingly, TFPI-Xa was found to inhibit the activities of both FVIIa and FVIIa analogs bound to unperturbed endothelial cells. Despite significant differences observed in factor Xa generation on native endothelium exposed to FVIIa and FVIIa analogs, no differences were found in thrombin generation when cells were exposed to FVIIa or FVIIa analogs under plasma mimicking conditions, probably due to limited availability of anionic phospholipids and/or putative factor Xa and Va binding sites on their cell surface. Over all, our present data suggest that although FVIIa variants may generate factor Xa on native endothelium, the resultant factor Xa does not lead to enhanced thrombin generation on native endothelium compared to FVIIa. These data should reduce potential concerns about whether the use of FVIIa variants triggers unwanted coagulation on native endothelium, and may facilitate the development of FVIIa analogs as effective therapeutic agents in near future for treatment of patients with bleeding disorders.


Sign in / Sign up

Export Citation Format

Share Document