scholarly journals Factor IX is activated in vivo by the tissue factor mechanism

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 731-736 ◽  
Author(s):  
KA Bauer ◽  
BL Kass ◽  
H ten Cate ◽  
JJ Hawiger ◽  
RD Rosenberg

Abstract Despite significant progress in elucidating the biochemistry of the hemostatic mechanism, the process of blood coagulation in vivo remains poorly understood. Factor IX is a vitamin K-dependent glycoprotein that can be activated by factor XIa or the factor VII-tissue factor complex in vitro. To investigate the role of these two pathways in factor IX activation in humans, we have developed a sensitive procedure for quantifying the peptide that is liberated with the generation of factor IXa. The antibody population used for the immunoassay was raised in rabbits and chromatographed on a factor IX-agarose immunoadsorbent to obtain antibody populations with minimal intrinsic reactivity toward factor IX. We determined that the mean level of the factor IX activation peptide (FIXP) in normal individuals under the age of 40 years was 203 pmol/L and that levels increased significantly with advancing age. The mean concentration of FIXP was markedly reduced to 22.7 pmol/L in nine patients with hereditary factor VII deficiency (factor VII coagulant activity less than 7%) but was not significantly different from normal controls in nine subjects with factor XI deficiency (factor XI coagulant activity less than 8%). These data indicate that factor IXa generation in vivo results mainly from the activity of the tissue factor mechanism rather than the contact system (factor XII, prekallikrein, high molecular-weight kininogen, factor XI). Our results may also help to explain the absence of a bleeding diathesis in many patients with deficiencies of the contact factors of coagulation.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Dmitri V. Kravtsov ◽  
Anton Matafonov ◽  
Erik I. Tucker ◽  
Mao-fu Sun ◽  
Peter N. Walsh ◽  
...  

Abstract During surface-initiated blood coagulation in vitro, activated factor XII (fXIIa) converts factor XI (fXI) to fXIa. Whereas fXI deficiency is associated with a hemorrhagic disorder, factor XII deficiency is not, suggesting that fXI can be activated by other mechanisms in vivo. Thrombin activates fXI, and several studies suggest that fXI promotes coagulation independent of fXII. However, a recent study failed to find evidence for fXII-independent activation of fXI in plasma. Using plasma in which fXII is either inhibited or absent, we show that fXI contributes to plasma thrombin generation when coagulation is initiated with low concentrations of tissue factor, factor Xa, or α-thrombin. The results could not be accounted for by fXIa contamination of the plasma systems. Replacing fXI with recombinant fXI that activates factor IX poorly, or fXI that is activated poorly by thrombin, reduced thrombin generation. An antibody that blocks fXIa activation of factor IX reduced thrombin generation; however, an antibody that specifically interferes with fXI activation by fXIIa did not. The results support a model in which fXI is activated by thrombin or another protease generated early in coagulation, with the resulting fXIa contributing to sustained thrombin generation through activation of factor IX.


Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4187-4196 ◽  
Author(s):  
GJ Miller ◽  
JC Martin ◽  
KA Mitropoulos ◽  
MP Esnouf ◽  
JA Cooper ◽  
...  

Factor VII activity (FVIIc), a risk marker for coronary heart disease, is increased during postprandial lipemia. Factor VII activation accompanies lipolysis of triglyceride-rich lipoproteins, but the nature of this association and whether it is causal remain uncertain. To explore this issue, four patients with homozygous factor XII deficiency, four with complete factor XI deficiency, six with factor IX deficiency, and their respective age- and sex-matched controls were given two isocaloric dietary regimens, one providing on average 136 g fat and the other 19 g fat. Blood was taken before breakfast, immediately before lunch at 195 minutes, and at completion of the study at 390 minutes. All samples for each subject and matched control were assayed as one batch for FVIIc, activated factor VII, and factor VII antigen (FVIIag). Activation of factor VII was observed with the high- fat regimen but not with the low-fat regimen in all controls, factor XII-deficient patients, and factor XI-deficient patients. No factor VII activation was observed during either regimen in factor IX-deficient patients, but a normal postprandial responsiveness of factor VII to dietary fat was restored in one patient who replicated the study after factor IX therapy. Plasma FVIIag was not altered postprandially in either regimen in any group of patients or controls. Factor IX apparently plays an obligatory role in the postprandial activation of factor VII, although the mechanism remains to be determined.


1998 ◽  
Vol 80 (08) ◽  
pp. 233-238 ◽  
Author(s):  
K. A. Mitropoulos ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. C. Martin ◽  
M. P. Esnouf ◽  
...  

SummaryAbetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyce-ride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 μmol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients’ mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

Abstract We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


1981 ◽  
Author(s):  
A M H P van den Besselaar ◽  
I E Ram ◽  
R M Bertina

This study is concerned with the question whether activation of factor IX by factor VII - tissue thromboplastin contributes to the rate of plasma coagulation. The protein component of tissue factor was partially purified from human brain. Its molecular weight as deduced from SDS - polyacrylamide gel electrophoresis was about 48,000. Reconstitution of thromboplastin activity was obtained by mixing apoprotein and phospholipids in the presence of Triton X-100 and subsequent removal of Triton by adsorption to Biobeads SM-2. Reconstituted tissue factor greatly accelerated the activation of factor IX by isolated factor VII in the presence of calcium ions. In a contact free system (plasma from a patient with congenital factor XII deficiency; factor XII<0.001 Unit/ml) plasma coagulation times (tc) were determined as a function of apoprotein concentration (at constant phospholipid) both in the presence and absence of factor IX. At high apoprotein concentration tc showed to be independent of factor IX, whereas at low apoprotein concentration the removal of factor IX resulted in a 2 - 3 fold increase of tc. The involvement of the tissue factor - factor VII complex in this phenomenon was evaluated using a specific anti-factor VII serum. The results indicate that activation of factor IX by factor VII - tissue thromboplastin does not significantly contribute to the rate of plasma coagulation.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6963-6970 ◽  
Author(s):  
Sharon H. Choi ◽  
Stephanie A. Smith ◽  
James H. Morrissey

Abstract Factor XI deficiency is associated with a bleeding diathesis, but factor XII deficiency is not, indicating that, in normal hemostasis, factor XI must be activated in vivo by a protease other than factor XIIa. Several groups have identified thrombin as the most likely activator of factor XI, although this reaction is slow in solution. Although certain nonphysiologic anionic polymers and surfaces have been shown to enhance factor XI activation by thrombin, the physiologic cofactor for this reaction is uncertain. Activated platelets secrete the highly anionic polymer polyphosphate, and our previous studies have shown that polyphosphate has potent procoagulant activity. We now report that polyphosphate potently accelerates factor XI activation by α-thrombin, β-thrombin, and factor XIa and that these reactions are supported by polyphosphate polymers of the size secreted by activated human platelets. We therefore propose that polyphosphate is a natural cofactor for factor XI activation in plasma that may help explain the role of factor XI in hemostasis and thrombosis.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 218-226 ◽  
Author(s):  
LV Rao ◽  
SP Bajaj ◽  
SI Rapaport

We have studied factor VII activation by measuring the ratio of factor VII clotting to coupled amidolytic activity (VIIc/VIIam) and cleavage of 125I-factor VII. In purified systems, a low concentration of Xa or a higher concentration of IXa rapidly activated 125I-factor VII, yielding a VIIc/VIIam ratio of 25 and similar gel profiles of heavy and light chain peaks of VIIa. On further incubation, VIIa activity diminished and a third 125I-peak appeared. When normal blood containing added 125I- factor VII was clotted in a glass tube, the VIIc/VIIam ratio rose fivefold, and 20% of the 125I-factor VII was cleaved. Clotting normal plasma in an activated partial thromboplastin time (APTT) system yielded a VIIc/VIIam ratio of 25 and over 90% cleavage of 125I-factor VII. Clotting factor XII-deficient plasma preincubated with antibodies to factor X in an APTT system with added XIa yielded a VIIc/VIIam ratio of 19 and about 60% cleavage, which indicates that IXa, at a concentration achievable in plasma, can effectively activate factor VII. Clotting normal plasma with undiluted tissue factor yielded a VIIc/VIIam ratio of 15 to 20 and 60% cleavage of 125I-factor VII, whereas clotting plasma with diluted tissue factor activated factor VII only minimally. We conclude that both Xa and IXa can function as significant activators of factor VII in in vitro clotting mixtures but believe that only small amounts of factor VII may be activated in vivo during hemostasis.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 437-443
Author(s):  
S Schiffman ◽  
R Margalit ◽  
M Rosove ◽  
D Feinstein

Recently we have described a normal plasma activity that modulates contact activation by inhibiting adsorption of factor XI to activating surfaces. Here we report the first identified case in which a patient has abnormal clotting tests due to an excess of a similar activity. The patient's plasma had a prolonged partial thromboplastin time and low apparent factor XI assay. His plasma prolonged the partial thromboplastin time of normal plasma and partially neutralized normal factor XI activity in vivo and in vitro. Analysis in dilute plasma revealed normal amounts of factor XI activity and antigen. Factor XI adsorption from plasma to activating surfaces was tested by adding a small amount of 125I-labeled purified factor XI to plasma, exposing the mixture to a glass tube or kaolin, and determining the amount of factor XI adsorbed to the surface. Whereas normal plasma and plasmas deficient in factor XII, factor XI, or Fletcher factor yielded about 4% adsorption to glass, factor XI adsorption from patient's plasma was less than 1%, indicating the presence of an adsorption inhibitor. This inhibitor did not affect factor XI activation or the activity of preformed factor XIa. It was not adsorbed by AI(OH)3 and was present in serum and the macroglobulin peak on gel filtration of the plasma through Sephadex G-200. The patient's history does not allow a definitive conclusion as to whether this inhibitor was associated with abnormal bleeding.


Sign in / Sign up

Export Citation Format

Share Document