scholarly journals The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume

Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3928-3934 ◽  
Author(s):  
Lionel Blanc ◽  
Jing Liu ◽  
Michel Vidal ◽  
Joel Anne Chasis ◽  
Xiuli An ◽  
...  

Abstract Aquaporin-1 (AQP-1), the universal water channel, is responsible for rapid response of cell volume to changes in plasma tonicity. In the membrane of the red cell the concentration of the protein is tightly controlled. Here, we show that AQP-1 is partially lost during in vitro maturation of mouse reticulocytes and that it is associated with exosomes, released throughout this process. AQP-1 in young reticulocytes localizes to the plasma membrane and also in endosomal compartments and exosomes, formed both in vitro and in vivo. During maturation a part of the total pool of AQP-1 is differentially sorted and released via the exosomal pathway. A proteasome inhibitor, MG132, suppresses secretion of AQP-1, implying that ubiquitination is a sorting signal for its release. We further show that modulation of medium tonicity in vitro regulates the secretion of AQP-1, thus showing that extracellular osmotic conditions can drive sorting of selected proteins by the exosomal pathway. These results lead us to suggest that AQP-1 sorting into exosomes may be the mechanism by which the reticulocyte adapts to environmental changes during its maturation.

1997 ◽  
Vol 272 (5) ◽  
pp. F587-F596 ◽  
Author(s):  
T. L. Pallone ◽  
B. K. Kishore ◽  
S. Nielsen ◽  
P. Agre ◽  
M. A. Knepper

Outer medullary descending vasa recta (OMDVR) were perfused in vitro, and volume efflux was measured by driving water movement with transmural gradients of NaCl or albumin. Consistent with mediation by water channels, p-chloromercuribenzenesulfonic acid (pCMBS) markedly inhibited volume flux induced by NaCl. Dithiothreitol reversed the inhibition, pCMBS did not significantly alter water flux induced by albumin. Osmotic water permeability (Pf) of the pCMBS-sensitive pathway of glutaraldehyde-fixed and nonfixed OMDVR was 1,102 +/- 449 and 1,257 +/- 718 microns/s (means +/- SD), respectively. pCMBS reduced Pf to near zero, whereas diffusional water permeability in the same vessels was only slightly inhibited. Immunoreactive aquaporin-1 (AQP1) measured by enzyme-linked immunosorbent assay in collagenase-treated and untreated OMDVR was 5.2 +/- 1.0 and 4.2 +/- 0.4 fmol/mm, respectively, values that account well for the experimental Pf. We conclude that OMDVR water flux driven by NaCl gradients is most likely mediated by the AQP1 water channel and that NaCl and urea gradients drive water efflux in vivo by this route.


2019 ◽  
Author(s):  
Rebecca McLennan ◽  
Mary C. McKinney ◽  
Jessica M. Teddy ◽  
Jason A. Morrison ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACTNeural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin-1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed, direction, and the length and stability of cell filopodia. Further, AQP-1 enhances matrix metalloprotease (MMP) activity and colocalizes with phosphorylated focal adhesion kinases (pFAK). Co-localization of AQP-1 expression with EphB guidance receptors in the same migrating neural crest cells raises novel implications for the concept of guided bulldozing by lead cells during migration.


1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


1989 ◽  
Vol 141 (1) ◽  
pp. 133-149 ◽  
Author(s):  
W. Speckner ◽  
J. F. Schindler ◽  
C. Albers

Carp erythrocytes were fractionated by angle-head centrifugation which yielded fractions with a linear increase in density. Haematological examinations revealed that the heavier red blood cells of carp had greater volumes (MCV), more haemoglobin (MCH) and higher haemoglobin concentrations (MCHC) than light ones. The same experiments with human red cell fractions yielded a decrease in MCV, constant MCH and an increase in MCHC. Haemoglobin content in individual erythrocytes was also determined by scanning stage absorbance cytophotometry to establish the frequency distribution of the cellular haemoglobin contents. In carp, the distribution was symmetrical with the means increasing with density. No such change with cell density was found in human erythrocytes. Both carp and human erythrocytes incorporated [2-14C]glycine in vitro. After gel filtration, radioactivity was detected in carp, but not in human, haemoglobin fractions. 14C was found in all three haemoglobin fractions, obtained by isoelectric focusing, and was present in the haem and in the globin. [2-14C]glycine-labelled erythrocytes were reinjected into chronically cannulated carp and followed in vivo for several months. With time, the main peak of scintillation counts shifted from red cell fractions of low to high density. This is considered as evidence that density and age of red cells in carp are positively correlated and that erythrocytes can synthesize haemoglobin while circulating in the peripheral blood.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 2173-2181 ◽  
Author(s):  
Benjamin T. Spike ◽  
Benjamin C. Dibling ◽  
Kay F. Macleod

Abstract Definitive erythropoiesis occurs in islands composed of a central macrophage in contact with differentiating erythroblasts. Erythroid maturation including enucleation can also occur in the absence of macrophages both in vivo and in vitro. We reported previously that loss of Rb induces cell-autonomous defects in red cell maturation under stress conditions, while other reports have suggested that the failure of Rb-null erythroblasts to enucleate is due to defects in associated macrophages. Here we show that erythropoietic islands are disrupted by hypoxic stress, such as occurs in the Rb-null fetal liver, that Rb−/− macrophages are competent for erythropoietic island formation in the absence of exogenous stress and that enucleation defects persist in Rb-null erythroblasts irrespective of macrophage function.


2018 ◽  
Vol 6 (4) ◽  
pp. 155-162 ◽  
Author(s):  
Sylwia Borys-Wójcik ◽  
Ievgenia Kocherova ◽  
Piotr Celichowski ◽  
Małgorzata Popis ◽  
Michal Jeseta ◽  
...  

AbstractA wide variety of mechanisms controlling oligomerization are observed. The dynamic nature of protein oligomerization is important for bioactivity control. The oocyte must undergo a series of changes to become a mature form before it can fully participate in the processes associated with its function as a female gamete. The growth of oocytes in the follicular environment is accompanied by surrounding somatic cumulus (CCs) and granulosa cells (GCs). It has been shown that oocytes tested before and after in vitro maturation (IVM) differ significantly in the transcriptomic and proteomic profiles. The aim of this study was to determine new proteomic markers for the oligomerization of porcine oocyte proteins that are associated with cell maturation competence. The Affymetrix microarray assay was performed to examine the gene expression profile associated with protein oligomerization in oocytes before and after IVM. In total, 12258 different transcriptomes were analyzed, of which 419 genes with lower expression in oocytes after IVM. We found 9 genes: GJA1, VCP, JUP, MIF, MAP3K1, INSR, ANGPTL4, EIF2AK3, DECR1, which were significantly down-regulated in oocytes after IVM (in vitro group) compared to oocytes analyzed before IVM (in vivo group). The higher expression of genes involved in the oligomerization of the protein before IVM indicates that they can be recognized as important markers of biological activation of proteins necessary for the further growth and development of pig embryos.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1389-1393
Author(s):  
E Beutler ◽  
L Forman ◽  
C West

The addition of oxalate to blood stored in Citrate-phosphate-dextrose (CPD) produces a marked improvement in 2,3-diphosphoglycerate (2,3-DPG) preservation; an increase in 2,3-DPG levels can also be documented in short-term incubation studies. Oxalate is a potent in vitro inhibitor of red cell lactate dehydrogenase, monophosphoglycerate mutase, and pyruvate kinase (PK). In the presence of fructose 1,6-diphosphate the latter inhibitory effect is competitive with phospho(enol)pyruvate (PEP). Determination of the levels of intermediate compounds in red cells incubated with oxalate suggest the presence of inhibition at the PK step, indicating that this is the site of oxalate action. Apparent inhibition at the glyceraldehyde phosphate dehydrogenase step is apparently due to an increase in the NADH/NAD ratio. Oxalate had no effect on the in vivo viability of rabbit red cells stored in CPD preservatives for 21 days. Greater understanding of the toxicity of oxalate is required before it can be considered suitable as a component of preservative media, but appreciation of the mechanism by which it affects 2,3-DPG levels may be important in design of other blood additives. Malonate, the 3-carbon dicarboxylic acid analogue of oxalate late did not inhibit pyruvate kinase nor affect 2,3-DPG levels.


Sign in / Sign up

Export Citation Format

Share Document