Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor

Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5514-5522 ◽  
Author(s):  
Emily K. Waters ◽  
Ryan M. Genga ◽  
Michael C. Schwartz ◽  
Jennifer A. Nelson ◽  
Robert G. Schaub ◽  
...  

Abstract Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway. ARC19499 is an aptamer that inhibits TFPI, thereby enabling clot initiation and propagation via the extrinsic pathway. The core aptamer binds tightly and specifically to TFPI. ARC19499 blocks TFPI inhibition of both factor Xa and the TF/factor VIIa complex. ARC19499 corrects thrombin generation in hemophilia A and B plasma and restores clotting in FVIII-neutralized whole blood. In the present study, using a monkey model of hemophilia, FVIII neutralization resulted in prolonged clotting times as measured by thromboelastography and prolonged saphenous-vein bleeding times, which are consistent with FVIII deficiency. ARC19499 restored thromboelastography clotting times to baseline levels and corrected bleeding times. These results demonstrate that ARC19499 inhibition of TFPI may be an effective alternative to current treatments of bleeding associated with hemophilia.

2020 ◽  
Vol 26 ◽  
pp. 107602962095185
Author(s):  
Ahmed Kouta ◽  
Debra Hoppensteadt ◽  
Emily Bontekoe ◽  
Walter Jeske ◽  
Richard Duff ◽  
...  

Unfractionated heparin (UFH) is a sulfated glycosaminoglycan that consists of repeating disaccharides, containing iduronic acid (or glucuronic acid) and glucosamine, exhibiting variable degrees of sulfation. UFHs release tissue factor pathway inhibitor (TFPI) which inhibits the extrinsic pathway of coagulation by inactivating factor Xa and the factor VIIa/TF complex. Most heparins used clinically are derived from porcine intestinal mucosa however, heparins can also be derived from tissues of bovine and ovine origin. Currently there are some concerns about the shortage of the porcine heparins as they are widely used in the manufacturing of the low molecular weight heparins (LMWHs). Moreover, due to cultural and religious reasons in some countries, alternative sources of heparins are needed. Bovine mucosal heparins (BMH) are currently being developed for re-introduction to the US market for both medical and surgical indications. Compared to porcine mucosal heparin (PMH), BMH exhibits a somewhat weaker anti-coagulant activity. In this study, we determined the TFPI antigen level following administration of various dosages of UFHs from different origins. These studies demonstrated that IV administration of equigravemetric dosages of PMH and ovine mucosal heparin (OMH) to non-human primates resulted in comparable TFPI antigen release from endothelial cells. In addition, the levels of TFPI were significantly higher than TFPI antigen levels observed after BMH administration. Potency adjusted dosing resulted in comparable TFPI release profiles for all 3 heparins. Therefore, such dosing may provide uniform levels of anticoagulation for the parenteral indications for UFHs. These observations warrant further clinical validation in specific indications.


1997 ◽  
Vol 78 (02) ◽  
pp. 864-870 ◽  
Author(s):  
Hideki Nagase ◽  
Kei-ichi Enjyoji ◽  
Yu-ichi Kamikubo ◽  
Keiko T Kitazato ◽  
Kenji Kitazato ◽  
...  

SummaryDepolymerized holothurian glycosaminoglycan (DHG) is a glycosaminoglycan extracted from the sea cucumber Stichopus japonicusSelenka. In previous studies, we demonstrated that DHG has antithrombotic and anticoagulant activities that are distinguishable from those of heparin and dermatan sulfate. In the present study, we examined the effect of DHG on the tissue factor pathway inhibitor (TFPI), which inhibits the initial reaction of the tissue factor (TF)-mediated coagulation pathway. We first examined the effect of DHG on factor Xa inhibition by TFPI and the inhibition of TF-factor Vila by TFPI-factor Xa in in vitro experiments using human purified proteins. DHG increased the rate of factor Xa inhibition by TFPI, which was abolished either with a synthetic C-terminal peptide or with a synthetic K3 domain peptide of TFPI. In contrast, DHG reduced the rate of TF-factor Vila inhibition by TFPI-factor Xa. Therefore, the effect of DHG on in vitroactivity of TFPI appears to be contradictory. We then examined the effect of DHG on TFPI in cynomolgus monkeys and compared it with that of unfractionated heparin. DHG induced an increase in the circulating level of free-form TFPI in plasma about 20-fold when administered i.v. at 1 mg/kg. The prothrombin time (PT) in monkey plasma after DHG administration was longer than that estimated from the plasma concentrations of DHG. Therefore, free-form TFPI released by DHG seems to play an additive role in the anticoagulant mechanisms of DHG through the extrinsic pathway in vivo. From the results shown in the present work and in previous studies, we conclude that DHG shows anticoagulant activity at various stages of coagulation reactions, i.e., by inhibiting the initial reaction of the extrinsic pathway, by inhibiting the intrinsic Xase, and by inhibiting thrombin.


2005 ◽  
Vol 280 (23) ◽  
pp. 22308-22317 ◽  
Author(s):  
Cristina Lupu ◽  
Xiaohong Hu ◽  
Florea Lupu

Tissue factor pathway inhibitor (TFPI) blocks tissue factor-factor VIIa (TF-FVIIa) activation of factors X and IX through the formation of the TF-FVIIa-FXa-TFPI complex. Most TFPI in vivo associates with caveolae in endothelial cells (EC). The mechanism of this association and the anticoagulant role of caveolar TFPI are not yet known. Here we show that expression of caveolin-1 (Cav-1) in 293 cells keeps TFPI exposed on the plasmalemma surface, decreases the membrane lateral mobility of TFPI, and increases the TFPI-dependent inhibition of TF-FVIIa. Caveolae-associated TFPI supports the co-localization of the quaternary complex with caveolae. To investigate the significance of these observations for EC we used RNA interference to deplete the cells of Cav-1. Functional assays and fluorescence microscopy revealed that the inhibitory properties of TFPI were diminished in EC lacking Cav-1, apparently through deficient assembly of the quaternary complex. These findings demonstrate that caveolae regulate the inhibition by cell-bound TFPI of the active protease production by the extrinsic pathway of coagulation.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 645-651 ◽  
Author(s):  
LV Rao ◽  
SI Rapaport

Abstract We have extended earlier studies (Blood 66:204, 1985) of a mechanism of inhibition of factor VIIa/tissue factor activity that requires a plasma component (called herein extrinsic pathway inhibitor or EPI) and factor Xa. An activated peptide release assay using 3H-factor IX as a substrate was used to evaluate inhibition. Increasing the tissue factor concentration from 20% to 40% (vol/vol) overcame the inhibitory mechanism in normal plasma but not in factor VII-deficient plasma supplemented with a low concentration of factor VII. A second wave of factor IX activation obtained by a second addition of tissue factor to plasma with a normal factor VII concentration was almost abolished by supplementing the reaction mixture with additional EPI and factor X. Factor Xa's active site was necessary for factor Xa's contribution to inhibition, but preliminary incubation of factor Xa with EPI in the absence of factor VIIa/tissue factor complex or of factor VIIa/tissue factor complex in the absence of EPI did not replace the need for the simultaneous presence of factor Xa, factor VIIa/tissue factor, calcium, and EPI in an inhibitory reaction mixture. Inhibition of factor VIIa/tissue factor was reversible; both tissue factor and factor VIIa activity could be recovered from a dissociated, inhibited factor VIIa/tissue factor complex. EPI appeared to bind to a factor VIIa/tissue factor complex formed in the presence of factor Xa but not to a factor VIIa/tissue factor complex formed in the absence of factor Xa.


2013 ◽  
Vol 289 (3) ◽  
pp. 1732-1741 ◽  
Author(s):  
Michael Dockal ◽  
Rudolf Hartmann ◽  
Markus Fries ◽  
M. Christella L. G. D. Thomassen ◽  
Alexandra Heinzmann ◽  
...  

Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that inhibits activated factor X (FXa) via a slow-tight binding mechanism and tissue factor-activated FVII (TF-FVIIa) via formation of a quaternary FXa-TFPI-TF-FVIIa complex. Inhibition of TFPI enhances coagulation in hemophilia models. Using a library approach, we selected and subsequently optimized peptides that bind TFPI and block its anticoagulant activity. One peptide (termed compound 3), bound with high affinity to the Kunitz-1 (K1) domain of TFPI (Kd ∼1 nm). We solved the crystal structure of this peptide in complex with the K1 of TFPI at 2.55-Å resolution. The structure of compound 3 can be segmented into a N-terminal anchor; an Ω-shaped loop; an intermediate segment; a tight glycine-loop; and a C-terminal α-helix that is anchored to K1 at its reactive center loop and two-stranded β-sheet. The contact surface has an overall hydrophobic character with some charged hot spots. In a model system, compound 3 blocked FXa inhibition by TFPI (EC50 = 11 nm) and inhibition of TF-FVIIa-catalyzed FX activation by TFPI (EC50 = 2 nm). The peptide prevented transition from the loose to the tight FXa-TFPI complex, but did not affect formation of the loose FXa-TFPI complex. The K1 domain of TFPI binds and inhibits FVIIa and the K2 domain similarly inhibits FXa. Because compound 3 binds to K1, our data show that K1 is not only important for FVIIa inhibition but also for FXa inhibition, i.e. for the transition of the loose to the tight FXa-TFPI complex. This mode of action translates into normalization of coagulation of hemophilia plasmas. Compound 3 thus bears potential to prevent bleeding in hemophilia patients.


2003 ◽  
Vol 89 (01) ◽  
pp. 65-73 ◽  
Author(s):  
Garnet Jack ◽  
Keith Page ◽  
Tina Tetzloff ◽  
Connie Hall ◽  
Alan Mast ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) abrogates coagulation initiated by the factor VIIa/tissue factor catalytic complex. While the gene structure of TFPI suggests that it is a secreted protein, a large pool of TFPI is associated with the vascular endothelium through its affinity for a glycosylphosphatidylinositol (GPI)-linked membrane protein. Inhibition of tissue factor by TFPI coincides with the translocation of quaternary complexes containing tissue factor, factor VIIa, factor Xa, and TFPI to detergent-insoluble plasma membrane domains rich in cholesterol, sphingomyelin, and GPI-linked proteins known as lipid rafts and caveolae. It is not known if localization of TFPI to these membrane domains is required for its inhibition of tissue factor procoagulant activity. We generated chimeric TFPI molecules linked directly to the plasma membrane via a GPI anchor or hydrophobic transmembrane domain and expressed these in HEK293 cells that produce tissue factor but not endogenous TFPI. The GPI-anchored chimera was exclusively enriched in detergent-insoluble membrane fractions while the transmembrane molecule was not. Transfectants expressing equal levels of the GPI-linked or transmembrane TFPI displayed equal anticoagulant potency as assessed by tissue factor-mediated conversion of factor X to factor Xa. Disruption of lipid rafts with cyclodextrin likewise had no effect on the inhibitory activity of the transmembrane or GPI-linked TFPI chimeras in HEK293 cells, nor on endogenous TFPI expressed by ECV304 cells. Thus, we conclude that the GPI anchor and membrane localization to lipid rafts does not enhance inhibition of factor VIIa/ tissue factor by cell-surface associated TFPI.


Sign in / Sign up

Export Citation Format

Share Document