Interactions between factor XIII and the αC region of fibrinogen

Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3460-3468 ◽  
Author(s):  
Kerrie A. Smith ◽  
Penelope J. Adamson ◽  
Richard J. Pease ◽  
Jane M. Brown ◽  
Anthony J. Balmforth ◽  
...  

Abstract Fibrinogen αC residues 242-424 have been shown to have a major regulatory role in the activation of factor XIII-A2B2 (FXIII-A2B2); however, the interactions underpinning this enhancing effect have not been determined. Here, we have characterized the binding of recombinant (r)FXIII-A subunit and FXIII-A2B2 with fibrin(ogen) and fibrin αC residues 233-425. Using recombinant truncations of the fibrin αC region 233-425 and surface plasmon resonance, we found that activated rFXIII-A bound αC 233-425 (Kd of 2.35 ± 0.09μM) which was further localized to αC 389-403. Site-directed mutagenesis of this region highlighted Glu396 as a key residue for binding of activated rFXIII-A. The interaction was specific for activated rFXIII-A and depended on the calcium-induced conformational change known to occur in rFXIII-A during activation. Furthermore, nonactivated FXIII-A2B2, thrombin-cleaved FXIII-A2B2, and activated FXIII-A2B2 each bound fibrin(ogen) and specifically αC region 371-425 with high affinity (Kd < 35nM and Kd < 31nM, respectively), showing for the first time the potential involvement of the αC region in binding to FXIII-A2B2. These results suggest that in addition to fibrinogen γ′ chain binding, the fibrin αC region also provides a platform for the binding of FXIII-A2B2 and FXIII-A subunit.

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Sana Alavi ◽  
Hamed Ghadiri ◽  
Bahareh Dabirmanesh ◽  
Khosro Khajeh

One of the advantages of surface plasmon resonance is its sensitivity and real-time analyses performed by this method. These characteristics allow us to further investigate the interactions of challenging proteins like Rap1-interacting factor 1 (Rif1). Rif1 is a crucial protein responsible for regulating different cellular processes including DNA replication, repair, and transcription. Mammalian Rif1 is yet to be fully characterized, partly because it is predicted to be intrinsically disordered for a large portion of its polypeptide. This protein has recently been the target of research as a potential biomarker in many cancers. Therefore, finding its most potent interacting partner is of utmost importance. Previous studies showed Rif1’s affinity towards structured DNAs and amongst them, T6G24 was superior. Recent studies have shown mouse Rif1 (muRif1) C-terminal domain’s (CTD) role in binding to G-quadruplexes (G4). There were many concerns in investigating the Rif1 and G4 interaction, which can be minimized using SPR. Therefore, for the first time, we have assessed its binding with G4 at nano-molar concentrations with SPR which seems to be crucial for its binding analyses. Our results indicate that muRif1-CTD has a high affinity for this G4 sequence as it shows a very low KD (6 ± 1 nM).


2016 ◽  
Vol 161 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Natsuki Fukuda ◽  
Yoshiaki Suwa ◽  
Makiyo Uchida ◽  
Yoshihiro Kobashigawa ◽  
Hideshi Yokoyama ◽  
...  

The Analyst ◽  
2019 ◽  
Vol 144 (15) ◽  
pp. 4526-4533 ◽  
Author(s):  
Pan Li ◽  
Meihong Ge ◽  
Chentai Cao ◽  
Dongyue Lin ◽  
Liangbao Yang

Fe3O4/Au composites demonstrated a coupled enhanced mechanism allowing for sensitive detection of dopamine in complicated specimens subjected to simple pretreatment.


The Analyst ◽  
2015 ◽  
Vol 140 (3) ◽  
pp. 902-906 ◽  
Author(s):  
Yi He ◽  
Haili Yu

In this study, a novel assay for the detection of free chlorine is proposed for the first time.


RSC Advances ◽  
2015 ◽  
Vol 5 (108) ◽  
pp. 89105-89112 ◽  
Author(s):  
Pandi Shan ◽  
Chenggang Niu ◽  
Dawei Huang ◽  
Guangming Zeng ◽  
Huan Zhang

Highly efficient Ag/AgCl/BiPO4 plasmonic photocatalyst was synthesized for the first time. The catalyst showed excellent visible photocatalytic activity and high stability. A surface plasmon resonance mechanism was investigated.


2005 ◽  
Vol 390 (2) ◽  
pp. 475-484 ◽  
Author(s):  
L. Niv-Spector ◽  
N. Raver ◽  
M. Friedman-Einat ◽  
J. Grosclaude ◽  
E. E. Gussakovsky ◽  
...  

The binding domain of the chicken leptin receptor [chLBD (chicken leptin-binding domain)], subcloned from the full-size chicken leptin receptor and prepared in an Escherichia coli system, was subjected to site-directed mutagenesis to identify the amino acids involved in leptin binding. A total of 22 electrophoretically pure, >90% monomer-containing mutants were expressed, refolded and purified. The effects of the mutations were tested by the ability to form complexes with ovine leptin, and the kinetic parameters of interaction were determined by surface plasmon resonance. Six mutants were used to determine whether mutations of several amino acids that differ between chLBD and mammalian LBDs will affect affinity: none showed any such effect, except the mutant A105D (Ala105→Asp), which exhibited some decrease in affinity. Surface plasmon resonance analysis identified six mutants in which binding activity was totally abolished (F73A, Y14A/F73A, V76A/F77A, L78A/L79A, V76A/F77A/L78A/L79A and A105D/D106V) and six mutants (Y14A, R41A, R41A/S42A/K43A, V103A, V135A/F136A and F136A) in which affinity for the hormone was reduced, mainly by increased dissociation rates. Gel-filtration experiments indicated the formation of a 1:1 ovine or human leptin–chLBD complex with a molecular mass of approx. 41 kDa. Gel-filtration experiments yielded 1:1 complexes with those mutants in which affinity had decreased, but not with the six mutants, which had totally lost their binding capacity. Modelling the leptin–chLBD complex indicated that the binding domain of the latter is located mainly in the L3 loop, which contributes nine amino acid residues interacting with leptin. Contact-surface analysis identified the residues having the highest contribution to the recognition site to be Phe73, Phe77 and Leu79.


Sign in / Sign up

Export Citation Format

Share Document