scholarly journals ICAM-1–activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration

Blood ◽  
2012 ◽  
Vol 120 (9) ◽  
pp. 1942-1952 ◽  
Author(s):  
Guoquan Liu ◽  
Aaron T. Place ◽  
Zhenlong Chen ◽  
Viktor M. Brovkovych ◽  
Stephen M. Vogel ◽  
...  

Abstract Polymorphonuclear neutrophil (PMN) extravasation requires selectin-mediated tethering, intercellular adhesion molecule-1 (ICAM-1)–dependent firm adhesion, and platelet/endothelial cell adhesion molecule 1 (PECAM-1)–mediated transendothelial migration. An important unanswered question is whether ICAM-1–activated signaling contributes to PMN transmigration mediated by PECAM-1. We tested this concept and the roles of endothelial nitric oxide synthase (eNOS) and Src activated by PMN ligation of ICAM-1 in mediating PECAM-1–dependent PMN transmigration. We observed that lung PMN infiltration in vivo induced in carrageenan-injected WT mice was significantly reduced in ICAM-1−/− and eNOS−/− mice. Crosslinking WT mouse ICAM-1 expressed in human endothelial cells (ECs), but not the phospho-defective Tyr518Phe ICAM-1 mutant, induced SHP-2–dependent Src Tyr530 dephosphorylation that resulted in Src activation. ICAM-1 activation also stimulated phosphorylation of Akt (p-Ser473) and eNOS (p-Ser1177), thereby increasing NO production. PMN migration across EC monolayers was abolished in cells expressing the Tyr518Phe ICAM-1 mutant or by pretreatment with either the Src inhibitor PP2 or eNOS inhibitor L-NAME. Importantly, phospho–ICAM-1 induction of Src signaling induced PECAM-1 Tyr686 phosphorylation and increased EC surface anti–PECAM-1 mAb-binding activity. These results collectively show that ICAM-1–activated Src and eNOS signaling sequentially induce PECAM-1–mediated PMN transendothelial migration. Both Src and eNOS inhibition may be important therapeutic targets to prevent or limit vascular inflammation.

2001 ◽  
Vol 281 (1) ◽  
pp. H440-H447 ◽  
Author(s):  
Tao Rui ◽  
Gediminas Cepinskas ◽  
Qingping Feng ◽  
Ye-Shih Ho ◽  
Peter R. Kvietys

The goal of the present study was to assess whether cardiac myocytes exposed to anoxia-reoxygenation (A/R) could generate a chemotactic gradient for polymorphonuclear neutrophil (PMN) transendothelial migration. Exposure of neonatal mouse cardiac myocytes to A/R induced an oxidant stress in the myocytes. Supernatants obtained from A/R-conditioned myocytes promoted mouse PMN migration across mouse myocardial endothelial cell monolayers. This increase in PMN transendothelial migration could be prevented if catalase or a platelet-activating factor (PAF) antagonist was added to the supernatants before assay. Supernatants from A/R-conditioned myocytes activated endothelial cells by inducing an intracellular oxidant stress. The oxidant stress and PMN transendothelial migration induced by supernatants from A/R-conditioned myocytes were substantially reduced when endothelial cells derived from manganese superoxide dismutase overexpressing mice were used in the assays. Supernatants from A/R-conditioned myocytes also increased endothelial cell surface levels of E-selectin and intercellular adhesion molecule-1. Our results indicate that cardiac myocytes exposed to A/R can generate a chemotactic gradient, presumably due to production and release of stable oxidants and PAF. The ability of supernatants from A/R-conditioned myocytes to promote PMN transendothelial migration was largely dependent on induction of an oxidant stress in endothelial cells. In addition, these supernatants also induced a proadhesive phenotype in the endothelial cells.


2002 ◽  
Vol 11 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Doris M. Tham ◽  
Baby Martin-McNulty ◽  
Yi-xin Wang ◽  
Dennis W. Wilson ◽  
Ronald Vergona ◽  
...  

Angiotensin II (ANG II) promotes vascular inflammation through nuclear factor-κB (NF-κB)-mediated induction of pro-inflammatory genes. The role of peroxisome proliferator-activated receptors (PPARs) in modulating vascular inflammation and atherosclerosis in vivo is unclear. The aim of the present study was to examine the effects of ANG II on PPARs and NF-κB-dependent pro-inflammatory genes in the vascular wall in an in vivo model of atherosclerosis and aneurysm formation. Six-month-old male apolipoprotein E-deficient (apoE-KO) mice were treated with ANG II (1.44 mg/kg per day for 30 days). ANG II enhanced vascular inflammation, accelerated atherosclerosis, and induced formation of abdominal aortic aneurysms. These effects of ANG II in the aorta were associated with downregulation of both PPAR-α and PPAR-γ mRNA and protein and an increase in transcription of monocyte chemotactic protein-1 (MCP-1), macrophage-colony stimulating factor (M-CSF), endothelial-selectin (E-selectin), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) throughout the entire aorta. ANG II also activated NF-κB with increases in both p52 and p65 NF-κB subunits. In summary, these in vivo results indicate that ANG II, through activation of NF-κB-mediated pro-inflammatory genes, promotes vascular inflammation, leading to acceleration of atherosclerosis and induction of aneurysm in apoE-KO mice. Downregulation of PPAR-α and -γ by ANG II may diminish the anti-inflammatory potential of PPARs, thus contributing to enhanced vascular inflammation.


Neurosurgery ◽  
1997 ◽  
Vol 41 (2) ◽  
pp. 453-461 ◽  
Author(s):  
Allen K. Sills ◽  
Richard E. Clatterbuck ◽  
Thompson Reid C. ◽  
Paul L. Cohen ◽  
Tamargo Rafael J.

Sign in / Sign up

Export Citation Format

Share Document