chemotactic gradient
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Simone Becattini ◽  
Eric R. Littmann ◽  
Ruth Seok ◽  
Luigi Amoretti ◽  
Emily Fontana ◽  
...  

Abstract Tissue resident memory CD8+ T cells (Trm) are poised for immediate reactivation at sites of pathogen entry and provide optimal protection of mucosal surfaces. The intestinal tract represents a portal of entry for many infectious agents; however, to date specific strategies to enhance Trm responses at this site are lacking. Here, we present TMDI (Transient Microbiota Depletion-boosted Immunization), an approach that leverages antibiotic treatment to temporarily restrain microbiota-mediated colonization resistance, and favor intestinal expansion to high densities of an orally-delivered Listeria monocytogenes strain carrying an antigen of choice. By augmenting the local chemotactic gradient as well as the antigenic load, this procedure generates a highly expanded pool of functional, antigen-specific intestinal Trm, ultimately enhancing protection against infectious re-challenge in mice. We propose that TMDI is a useful model to dissect the requirements for optimal Trm responses in the intestine, and also a potential platform to devise novel mucosal vaccination approaches.


2020 ◽  
Vol 4 (15) ◽  
pp. 3559-3571
Author(s):  
Sumith R. Panicker ◽  
Tadayuki Yago ◽  
Bojing Shao ◽  
Rodger P. McEver

Abstract Ezrin/radixin/moesin (ERM) proteins are adaptors that link the actin cytoskeleton to the cytoplasmic domains of membrane proteins. Leukocytes express mostly moesin with lower levels of ezrin but no radixin. When leukocytes are activated, ERMs are postulated to redistribute membrane proteins from microvilli into uropods during polarization and to transduce signals that influence adhesion and other responses. However, these functions have not been tested in leukocytes lacking all ERMs. We used knockout (KO) mice with neutrophils lacking ezrin, moesin, or both proteins (double knockout [DKO]) to probe how ERMs modulate cell shape, adhesion, and signaling in vitro and in vivo. Surprisingly, chemokine-stimulated DKO neutrophils still polarized and redistributed ERM-binding proteins such as PSGL-1 and CD44 to the uropods. Selectin binding to PSGL-1 on moesin KO or DKO neutrophils activated kinases that enable integrin-dependent slow rolling but not those that generate neutrophil extracellular traps. Flowing neutrophils of all genotypes rolled normally on selectins and, upon chemokine stimulation, arrested on integrin ligands. However, moesin KO and DKO neutrophils exhibited defective integrin outside-in signaling and reduced adhesion strength. In vivo, DKO neutrophils displayed normal directional crawling toward a chemotactic gradient, but premature detachment markedly reduced migration from venules into inflamed tissues. Our results demonstrate that stimulated neutrophils do not require ERMs to polarize or to move membrane proteins into uropods. They also reveal an unexpected contribution of moesin to integrin outside-in signaling and adhesion strengthening.


2020 ◽  
Vol 11 (3) ◽  
pp. 247-251
Author(s):  
Ana Maria Abreu-Velez ◽  
Bruce R Smoller ◽  
Michael S Howard

2020 ◽  
Vol 16 (4) ◽  
pp. e1007708
Author(s):  
Jamie L. Nosbisch ◽  
Anisur Rahman ◽  
Krithika Mohan ◽  
Timothy C. Elston ◽  
James E. Bear ◽  
...  

2019 ◽  
Author(s):  
Joeri A. J. Wondergem ◽  
Maria Mytiliniou ◽  
Falko C. H. de Wit ◽  
Thom G. A. Reuvers ◽  
David Holcman ◽  
...  

AbstractCells encounter a wide variety of physical and chemical cues when navigating their native environments. However, their response to multiple simultaneous cues is not yet clear. In particular, the influence of topography, in the presence of a chemotactic gradient, on their migratory behavior is understudied. Here, we investigate the effects of topographical guidance on highly motile amoeboid cell migration (topotaxis) generated by asymmetrically placed micropillars. The micropillar field allows for an additional, natural chemotactic gradient in two different directions, thereby revealing the relevance of topotaxis in the presence of cell migration directed by chemical gradients (chemotaxis). Interestingly, we found that the topotactic drift generated by the pillar field is conserved during chemotaxis. We show that the drifts generated by both these cues add up linearly. A coarse-grained analysis as a function of pillar spacing subsequently revealed that the strength and direction of the topotactic drift is determined by (i) the pore size, (ii) space between pores, and (iii) the effective diffusion constant of the cells. Finally, we argue that topotaxis must be conserved during chemotaxis, as it is an emergent property of both the asymmetric properties of the pillar field and the inherent stochasticity of (biased) amoeboid migration.


RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7156-7164 ◽  
Author(s):  
Jun Zhang ◽  
Ching-An Peng

Chemotactic migration of biotinylated mesenchymal stem cells tethered with streptavidin-functionalized carbon nanotubes.


2017 ◽  
Vol 28 (23) ◽  
pp. 3457-3470 ◽  
Author(s):  
Alex C. Szatmary ◽  
Ralph Nossal ◽  
Carole A. Parent ◽  
Ritankar Majumdar

Migrating cells often exhibit signal relay, a process in which cells migrating in response to a chemotactic gradient release a secondary chemoattractant to enhance directional migration. In neutrophils, signal relay toward the primary chemoattractant N-­formylmethionyl-leucyl-phenylalanine (fMLP) is mediated by leukotriene B4 (LTB4). Recent evidence suggests that the release of LTB4 from cells occurs through packaging in exosomes. Here we present a mathematical model of neutrophil signal relay that focuses on LTB4 and its exosome-mediated secretion. We describe neutrophil chemotaxis in response to a combination of a defined gradient of fMLP and an evolving gradient of LTB4, generated by cells in response to fMLP. Our model enables us to determine the gradient of LTB4 arising either through directed secretion from cells or through time-varying release from exosomes. We predict that the secondary release of LTB4 increases recruitment range and show that the exosomes provide a time delay mechanism that regulates the development of LTB4 gradients. Additionally, we show that under decaying primary gradients, secondary gradients are more stable when secreted through exosomes as compared with direct secretion. Our chemotactic model, calibrated from observed responses of cells to gradients, thereby provides insight into chemotactic signal relay in neutrophils during inflammation.


Oncotarget ◽  
2017 ◽  
Vol 8 (59) ◽  
pp. 100339-100352 ◽  
Author(s):  
Hong Sun Kim ◽  
Yu-Chih Chen ◽  
Felipe Nör ◽  
Kristy A. Warner ◽  
April Andrews ◽  
...  

2017 ◽  
Vol 33 ◽  
pp. 16-29 ◽  
Author(s):  
Bhagawat C. Subramanian ◽  
Ritankar Majumdar ◽  
Carole A. Parent

2017 ◽  
Vol 114 (29) ◽  
pp. E5900-E5909 ◽  
Author(s):  
Valerie Chew ◽  
Liyun Lai ◽  
Lu Pan ◽  
Chun Jye Lim ◽  
Juntao Li ◽  
...  

The recent development of immunotherapy as a cancer treatment has proved effective over recent years, but the precise dynamics between the tumor microenvironment (TME), nontumor microenvironment (NTME), and the systemic immune system remain elusive. Here, we interrogated these compartments in hepatocellular carcinoma (HCC) using high-dimensional proteomic and transcriptomic analyses. By time-of-flight mass cytometry, we found that the TME was enriched in regulatory T cells (Tregs), tissue resident memory CD8+ T cells (TRMs), resident natural killer cells (NKRs), and tumor-associated macrophages (TAMs). This finding was also validated with immunofluorescence staining on Foxp3+CD4+ and PD-1+CD8+ T cells. Interestingly, Tregs and TRMs isolated from the TME expressed multiple markers for T-cell exhaustion, including PD-1, Lag-3, and Tim-3 compared with Tregs and TRMs isolated from the NTME. We found PD-1+ TRMs were the predominant T-cell subset responsive to anti–PD-1 treatment and significantly reduced in number with increasing HCC tumor progression. Furthermore, T-bet was identified as a key transcription factor, negatively correlated with PD-1 expression on memory CD8+ T cells, and the PD-1:T-bet ratio increased upon exposure to tumor antigens. Finally, transcriptomic analysis of tumor and adjacent nontumor tissues identified a chemotactic gradient for recruitment of TAMs and NKRs via CXCR3/CXCL10 and CCR6/CCL20 pathways, respectively. Taken together, these data confirm the existence of an immunosuppressive gradient across the TME, NTME, and peripheral blood in primary HCC that manipulates the activation status of tumor-infiltrating leukocytes and renders them immunocompromised against tumor cells. By understanding the immunologic composition of this gradient, more effective immunotherapeutics for HCC may be designed.


Sign in / Sign up

Export Citation Format

Share Document