scholarly journals Identification of the chemokine CCL28 as a growth and survival factor for human hematopoietic stem and progenitor cells

Blood ◽  
2013 ◽  
Vol 121 (19) ◽  
pp. 3838-3842 ◽  
Author(s):  
Christine Karlsson ◽  
Aurélie Baudet ◽  
Natsumi Miharada ◽  
Shamit Soneji ◽  
Rajeev Gupta ◽  
...  

Key Points Chemokine (C-C motif) ligand 28 (CCL28) is a novel growth factor for human hematopoietic stem and progenitor cells. CCL28 supports the in vitro and in vivo functional integrity of cultured primitive hematopoietic cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1293-1293
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Within the bone marrow environment, adhesive interactions between stromal cells and extracellular matrix molecules are required for stem and progenitor cell survival, proliferation and differentiation as well as their transmigration between bone marrow (BM) and the circulation. This regulation is mediated by cell surface adhesion receptors. In experimental mouse stem cell transplantation models, several classes of cell adhesion receptors have been shown to be involved in the homing and engraftment of stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Using FACS analysis, the integrin a6 chain was now found to be ubiquitously (>95%) expressed in mouse hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, lin−Sca-1+c-Kit+CD34+) both in adult bone marrow and in fetal liver. In vitro, about 70% of mouse BM lin−Sca-1+c-Kit+ cells adhered to laminin-10/11 and 40% adhered to laminin-8. This adhesion was mediated by integrin a6b1 receptor, as shown by functional blocking monoclonal antibodies. We also used a functional blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of hematopoietic stem and progenitor cells. We found that the integrin a6 antibody inhibited the homing of bone marrow progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C was reduced by about 40% as compared to cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells (LTR), antibody treated bone marrow cells were first injected intravenously into lethally irradiated primary recipients. After three hours, bone marrow cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis 16 weeks after transplantation revealed an 80% reduction of stem cell activity of integrin a6 antibody treated cells as compared to cells treated with control antibody. These results suggest that integrin a6 plays an important role for hematopoietic stem and progenitor cell homing in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1387-1387
Author(s):  
Hong Qian ◽  
Sten Eirik W. Jacobsen ◽  
Marja Ekblom

Abstract Homing of transplanted hematopoietic stem cells (HSC) in the bone marrow (BM) is a prerequisite for establishment of hematopoiesis following transplantation. However, although multiple adhesive interactions of HSCs with BM microenviroment are thought to critically influence their homing and subsequently their engraftment, the molecular pathways that control the homing of transplanted HSCs, in particular, of fetal HSCs are still not well understood. In experimental mouse stem cell transplantation models, several integrins have been shown to be involved in the homing and engraftment of both adult and fetal stem and progenitor cells in BM. We have previously found that integrin a6 mediates human hematopoietic stem and progenitor cell adhesion to and migration on its specific ligands, laminin-8 and laminin-10/11 in vitro (Gu et al, Blood, 2003; 101:877). Furthermore, integrin a6 is required for adult mouse HSC homing to BM in vivo (Qian et al., Abstract American Society of Hematology, Blood 2004 ). We have now found that the integrin a6 chain like in adult HSC is ubiquitously (>99%) expressed also in fetal liver hematopoietic stem and progenitor cells (lin−Sca-1+c-Kit+, LSK ). In vitro, fetal liver LSK cells adhere to laminin-10/11 and laminin-8 in an integrin a6b1 receptor-dependent manner, as shown by function blocking monoclonal antibodies. We have now used a function blocking monoclonal antibody (GoH3) against integrin a6 to analyse the role of the integrin a6 receptor for the in vivo homing of fetal liver hematopoietic stem and progenitor cells to BM. The integrin a6 antibody inhibited homing of fetal liver progenitors (CFU-C) into BM of lethally irradiated recipients. The number of homed CFU-C in BM was reduced by about 40% as compared to the cells incubated with an isotype matched control antibody. To study homing of long-term repopulating stem cells, BM cells were first incubated with anti-integrin alpha 6 or anti-integrin alpha 4 or control antibody, and then injected intravenously into lethally irradiated primary recipients. After three hours, BM cells of the primary recipients were analysed by competitive repopulation assay in secondary recipients. Blood analysis up to 16 weeks after transplantation showed that no reduction of stem cell reconstitution from integrin a6 antibody treated cells as compared to cells treated with control antibody. In accordance with this, fetal liver HSC from integrin a6 gene deleted embryos did not show any impairment of homing and engraftment in BM as compared to normal littermates. These results suggest that integrin a6 plays an important developmentally regulated role for homing of distinct hematopoietic stem and progenitor cell populations in vivo.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 83-83
Author(s):  
Alex J. Tipping ◽  
Cristina Pina ◽  
Anders Castor ◽  
Ann Atzberger ◽  
Dengli Hong ◽  
...  

Abstract Hematopoietic stem cells (HSCs) in adults are largely quiescent, periodically entering and exiting cell cycle to replenish the progenitor pool or to self-renew, without exhausting their number. Expression profiling of quiescent HSCs in our and other laboratories suggests that high expression of the zinc finger transcription factor GATA-2 correlates with quiescence. We show here that TGFβ1-induced quiescence of wild-type human cord blood CD34+ cells in vitro correlated with induction of endogenous GATA-2 expression. To directly test if GATA-2 has a causative role in HSC quiescence we constitutively expressed GATA-2 in human cord blood stem and progenitor cells using lentiviral vectors, and assessed the functional output from these cells. In both CD34+ and CD34+ CD38− populations, enforced GATA-2 expression conferred increased quiescence as assessed by Hoechst/Pyronin Y staining. CD34+ cells with enforced GATA-2 expression showed reductions in both colony number and size when assessed in multipotential CFC assays. In CFC assays conducted with more primitive CD34+ CD38− cells, colony number and size were also reduced, with myeloid and mixed colony number more reduced than erythroid colonies. Reduced CFC activity was not due to increased apoptosis, as judged by Annexin V staining of GATA-2-transduced CD34+ or CD34+ CD38− cells. To the contrary, in vitro cultures from GATA-2-transduced CD34+ CD38− cells showed increased protection from apoptosis. In vitro, proliferation of CD34+ CD38− cells was severely impaired by constitutive expression of GATA-2. Real-time PCR analysis showed no upregulation of classic cell cycle inhibitors such as p21, p57 or p16INK4A. However GATA-2 expression did cause repression of cyclin D3, EGR2, E2F4, ANGPT1 and C/EBPα. In stem cell assays, CD34+ CD38− cells constitutively expressing GATA-2 showed little or no LTC-IC activity. In xenografted NOD/SCID mice, transduced CD34+ CD38−cells expressing high levels of GATA-2 did not contribute to hematopoiesis, although cells expressing lower levels of GATA-2 did. This threshold effect is presumably due to DNA binding by GATA-2, as a zinc-finger deletion variant of GATA-2 shows contribution to hematopoiesis from cells irrespective of expression level. These NOD/SCID data suggest that levels of GATA-2 may play a part in the in vivo control of stem and progenitor cell proliferation. Taken together, our data demonstrate that GATA-2 enforces a transcriptional program on stem and progenitor cells which suppresses their responses to proliferative stimuli with the result that they remain quiescent in vitro and in vivo.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Lionel Faivre ◽  
Véronique Parietti ◽  
Fernando Siñeriz ◽  
Sandrine Chantepie ◽  
Marie Gilbert-Sirieix ◽  
...  

2020 ◽  
Vol 217 (9) ◽  
Author(s):  
James W. Swann ◽  
Lada A. Koneva ◽  
Daniel Regan-Komito ◽  
Stephen N. Sansom ◽  
Fiona Powrie ◽  
...  

An important comorbidity of chronic inflammation is anemia, which may be related to dysregulated activity of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Among HSPCs, we found that the receptor for IL-33, ST2, is expressed preferentially and highly on erythroid progenitors. Induction of inflammatory spondyloarthritis in mice increased IL-33 in BM plasma, and IL-33 was required for inflammation-dependent suppression of erythropoiesis in BM. Conversely, administration of IL-33 in healthy mice suppressed erythropoiesis, decreased hemoglobin expression, and caused anemia. Using purified erythroid progenitors in vitro, we show that IL-33 directly inhibited terminal maturation. This effect was dependent on NF-κB activation and associated with altered signaling events downstream of the erythropoietin receptor. Accordingly, IL-33 also suppressed erythropoietin-accelerated erythropoiesis in vivo. These results reveal a role for IL-33 in pathogenesis of anemia during inflammatory disease and define a new target for its treatment.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 81-81
Author(s):  
Silvana Di Giandomenico ◽  
Pouneh Kermani ◽  
Nicole Molle ◽  
Mia Yabut ◽  
Fabienne Brenet ◽  
...  

Abstract Background: Chronic anemia is a significant problem affecting over 3 million Americans annually. Therapies are restricted to transfusion and Erythropoietin Stimulating Agents (ESA). There is a need for new approaches to treat chronic anemia. Immature erythroid progenitors are thought to be continuously produced and then permitted to survive and mature if there is sufficient erythropoietin (Epo) available. This model is elegant in that oxygen sensing within the kidney triggers Epo production so anemia can increase Epo and promote erythroid output. However, during homeostasis this model suggests that considerable energy is used to produce unneeded erythroid progenitors. We searched for independent control and compartmentalization of erythropoiesis that could couple early hematopoiesis to terminal erythroid commitment and maturation. Methods: We previously found the proportion of bone marrow megakaryocytes (MKs) staining for active, signaling-competent TGFβ transiently increases during bone marrow regeneration after chemotherapy. To assess the functional role of Mk-TGFβ, we crossed murine strains harboring a floxed allele of TGFβ1 (TGFβ1Flox/Flox) littermate with a Mk-specific Cre deleter to generate mice with Mk-specific deletion of TGFβ1 (TGFβ1ΔMk/ΔMk). We analyzed hematopoiesis of these mice using high-dimensional flow cytometry, confocal immunofluorescent microscopy and in vitro and in vivo assays of hematopoietic function (Colony forming assays, and in vivo transplantation). Results: Using validated, 9-color flow cytometry panels capable of quantifying hematopoietic stem cells (HSCs) and six other hematopoietic progenitor populations, we found that Mk-specific deletion of TGFβ1 leads to expansion of immature hematopoietic stem and progenitor cells (HSPCs) (Fig1A&B). Functional assays confirmed a more than three-fold increase in hematopoietic stem cells (HSCs) capable of serially-transplanting syngeneic recipients in the bone marrow (BM) of TGFβ1ΔMk/ΔMk mice compared to their TGFβ1Flox/Flox littermates. Expansion was associated with less quiescent (Go) HSCs implicating Mk-TGFβ in the control of HSC cell cycle entry. Similarly, in vitro colony forming cell assays and in vivo spleen colony forming assays confirmed expansion of functional progenitor cells in TGFβ1ΔMk/ΔMk mice. These results place Mk-TGFβ as a critical regulator of the size of the pool of immature HSPCs. We found that the blood counts and total BM cellularity of TGFβ1ΔMk/ΔMk mice was normal despite the dramatic expansion of immature HSPCs. Using a combination of confocal immunofluorescence microscopy (cleaved caspase 3) (Fig1C) and flow cytometry (Annexin V and cleaved caspase 3) (Fig1D), we found ~10-fold greater apoptosis of mature precursor cells in TGFβ1ΔMk/ΔMk BM and spleens. Coincident with this, we found the number of Epo receptor (EpoR) expressing erythroid precursors to be dramatically increased. Indeed, apoptosis of erythroid precursors peaked as they transitioned from dual positive Kit+EpoR+ precursors to single positive cells expressing EpoR alone. Epo levels were normal in the serum of these mice. We reasoned that the excess, unneeded EpoR+ cells were not supported physiologic Epo levels but might respond to even small doses of exogenous Epo. Indeed, we found that the excess erythroid apoptosis could be rescued by administration of very low doses of Epo (Fig1E). Whereas TGFβ1Flox/Flox mice showed minimal reticulocytosis and no change in blood counts, TGFβ1ΔMk/ΔMk mice responded with exuberant reticulocytosis and raised RBC counts almost 10% within 6 days (Fig. 1F). Low dose Epo also rescued survival of Epo receptor positive erythroid precursors in the bone marrow, spleen and blood of TGFβ1ΔMk/ΔMk mice. TGFβ1ΔMk/ΔMk mice showed a similarly brisk and robust erythropoietic response during recovery from phenylhydrazine-induced hemolysis (Fig.1G). Exogenous TGFβ worsened BM apoptosis and caused anemia in treated mice. Pre-treatment of wild-type mice with a TGFβ signaling inhibitor sensitized mice to low dose Epo. Conclusion: These results place megakaryocytic TGFβ1 as a gate-keeper that restricts the pool of immature HSPCs and couples immature hematopoiesis to the production of mature effector cells. This work promises new therapies for chronic anemias by combining TGFβ inhibitors to increase the outflow of immature progenitors with ESAs to support erythroid maturation. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 14-14 ◽  
Author(s):  
Christopher R. Cogle ◽  
Manbok Kim ◽  
Masmudur Rahman ◽  
Edward W Scott ◽  
Grant McFadden ◽  
...  

Abstract Abstract 14 High dose chemotherapy followed by autologous blood and marrow transplantation (ABMT) has been used to treat patients with acute myeloid leukemia (AML), but leukemia relapse rates remain high. One reason is the potential contamination of marrow with leukemic stem and progenitor cells (LSPCs). Purging autologous hematopoietic grafts of LSPCs prior to transplant serves as a viable strategy for increasing transplant efficacy in these cases; however, previous attempts using cytotoxic agents and cell culture techniques have generally resulted in loss of normal stem and progenitor cell numbers and/or functionality. Oncolytic poxviruses, such as myxoma virus (MYXV), are promising new instruments in targeting human cancer. MYXV has normal tropism towards European rabbits (Oryctolagus cuniculus) while remaining nonpathogenic for all other vertebrate species tested including humans and mice. Despite this host specificity, we have shown that MYXV is capable of infecting and killing a wide variety of human cancer cell lines. In light of these observations, we investigated whether MYXV could specifically target and eliminate LSPCs from primary AML using an ex vivo purging technique as assessed using both in vitro and in vivo functional analyses. Using a MYXV construct that expresses GFP upon cell infection, we observed GFP+ cells in leukemia exposed to MYXV at a concentration of 10 MOI over a 3-day period. No GFP expression was observed in normal bone marrow (BM) or mock (vehicle only) treated controls. GFP+ AML cells also began to undergo apoptosis shown by positive Annexin V staining. For myxoma to be a viable therapeutic for leukemia, it must not only target primary leukemia but also spare normal hematopoietic stem and progenitor cells (HSPCs). To test normal progenitor cell function following exposure to MYXV, normal BM cells were incubated with and without MYXV and tested for colony forming cell (CFC) content. Following incubation with MYXV, we observed differentiated colonies forming after 14 days indicating that the CFC potential of normal HSPCs was not adversely affected by MYXV. The frequency of the different colonies formed was also similar between mock and MYXV treated groups. When AML cells were mock treated pleomorphic colonies formed consistent with AML-colony forming units (AML-CFUs). Conversely, when exposed to MYXV, AML cells did not form recognizable AML-CFU colonies and instead remained heterodispersed suggesting impairment of progenitor cell function in vitro. To assess functional effects of MYXV on leukemia engraftment, sublethally irradiated NOG mice were transplanted with either mock treated primary AML (n=7) or primary AML pre-treated with MYXV for 3 hours (n=10). After 8 weeks, the percentage of engrafted mice was 100% after mock treated AML transplant but dropped to 10% after MYXV treatment. Significantly lower mean engraftment was observed in the group that received MYXV treated AML in comparison to mock treated samples (4.5% vs. 24% respectively; p < 0.05). Moreover, we show susceptibility of a primary AML specimen harboring an activating internal tandem duplication (ITD) mutation in FLT3, which represents an aggressive malignancy well-known for insensitivity to conventional chemotherapy. In animals showing leukemia engraftment by FACS, PCR was positive for the FLT3 ITD mutation. However, molecular remissions were evident in mice receiving MYXV treated samples. Efficacy against this leukemia signifies opportunity for disease eradication in an otherwise grim clinical setting. Finally, to assess functional effects of MYXV on normal HSPC engraftment, sublethally irradiated NOG mice were transplanted with either mock treated normal BM (n=10) or MYXV treated BM (n=9). After 8 weeks, there was no difference in the numbers of mice that engrafted between mock treated or MYXV treated groups (70% vs. 78% respectively; p = 0.72). There was also no difference in mean levels of engraftment per animal (1% vs. 2%; p = 0.41) suggesting that MYXV does not adversely affect the in vivo engraftment potential of normal HSPCs. In these studies, primary human LSPCs were targeted by MYXV purging, while normal human HSPCs showed no response maintaining both in vitro and in vivo functional potential. Given this demonstrated efficacy and safety, ex vivo purging of autologous hematopoietic grafts with MYXV may be feasible in cancer patients undergoing high dose chemotherapy followed by ABMT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.


2018 ◽  
Vol 4 (11) ◽  
pp. eaau6762 ◽  
Author(s):  
Chen-Yuan Kao ◽  
Eleftherios T. Papoutsakis

Hematopoietic stem and progenitor cells (HSPCs) are important target cells for gene therapy applications. Current genetic modifications of HSPCs rely on viral vectors in vivo or electroporation ex vivo. Here, we developed a nonviral system based on megakaryocytic microparticles (MPs) for targeted delivery of plasmid DNA (pDNA) and small RNAs to HSPCs. We have previously shown that megakaryocytic MPs, the most abundant MPs in blood circulation, target specifically and deliver cargo to HSPCs both in vitro and in vivo. With an optimized electroporation protocol, an average of 4200 plasmid copies per MP were loaded into MP, thus enabling effective delivery of green fluorescent protein (GFP)–encoding pDNA to HSPCs and HSPC nuclei, with up to 81% nuclei containing pDNA. Effective functional small interfering RNA (siRNA) and microRNA (miRNA) delivery were also demonstrated. As patient-specific or generic megakaryocytic MPs can be readily generated and stored frozen, our data suggest that this system has great potential for therapeutic applications targeting HSPCs.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 859-859
Author(s):  
Seiji Fukuda ◽  
Edward M. Conway ◽  
Louis M. Pelus

Abstract The inhibitor of apoptosis protein Survivin is barely detectable in most normal adult tissues but is over-expressed in almost all cancers. Survivin regulates apoptosis, cell division and cell cycle, making anti-Survivin therapy an attractive cancer treatment strategy. We reported that Survivin is expressed and regulated by hematopoietic growth factors in normal human CD34+ cells and that over-expression of wild-type Survivin in bone marrow cells enhances in vitro proliferation and survival of normal hematopoietic progenitor cells, whereas disrupting Survivin reduced their proliferation and survival. These results suggest that Survivin regulates normal hematopoietic progenitor cell function. Although targeted anti-Survivin therapies for cancers demonstrate efficacy without overt toxicity in animal models, the consequences of in vivo Survivin disruption in normal hematopoietic stem and progenitor cells (HSPC) has not been determined. In order to understand the physiological roles of Survivin in normal HSPC function in vivo, we created Cre-ER™/Survivin flox/flox mice, in which the Survivin gene can be excised by Tamoxifen treatment and characterized HSPC growth following Survivin gene deletion. RT-PCR analysis showed that Survivin mRNA is expressed in freshly isolated normal mouse marrow Sca-1+, c-kit+, lin− (SKL) cells and more primitive CD34−SKL cells, which contain long term repopulating hematopoietic stem cells (HSC). Administration of 5mg of Tamoxifen for 6 days (3 days injection, 3 days off, 3 additional days and analyzed 14 days after final injection) in Cre-ER™/Survivin flox/flox mice induced Survivin gene deletion in marrow cells, but had little effect on peripheral blood cell count, marrow cellularity (3.5+/−7.1%, NS) or the proportion or total number of lineage committed cells (Gr-1+, Mac-1+, B220+, CD4+ and/or CD8+) in marrow and in peripheral blood. In contrast, short term Survivin deletion significantly decreased the frequency and the absolute number of undifferentiated linneg cells (37+/−6% reduction), c-kit+, lin− cells (35.2+/−8.4% reduction,), CFU-GM (31+/−9 % reduction), Lin−, IL7Ra−, Sca-1−, c-kit+, CD34+, Fcglow common myeloid progenitor cells (52+/−13% reduction), SKL cells (56.8+/−5.4% reduction) and CD34−SKL cells (60.6+/−5.5% reduction) in bone marrow compared to control mice. The effect of Survivin gene deletion was more dramatic on primitive hematopoietic populations compared to mature cells, which is consistent with down-regulation of Survivin in hematopoietic cells with terminal differentiation. Similarly, treatment of bone marrow cells from Cre-ER™/Survivin flox/flox mice with 1uM of Tamoxifen in vitro significantly reduced the number of CFU-GM, (c-kit+, lin−) KL, SKL and CD34−SKL cells cultured with hematopoietic cytokines and increased apoptosis measured by Annexin-V staining. These results suggest that Survivin is required and regulates normal hematopoietic stem and progenitor function in vivo and that Survivin function may be selectively essential for growth and differentiation of primitive hematopoietic cells. In addition, acute ablation of Survivin may cause adverse toxicity on HSPC that provide long term hematopoiesis in the patients receiving anti-Survivin target therapies.


Sign in / Sign up

Export Citation Format

Share Document